Research article Special Issues

Initial boundary value problems for space-time fractional conformable differential equation

  • Received: 06 January 2021 Accepted: 28 February 2021 Published: 12 March 2021
  • MSC : 26A33, 35K55

  • In this paper, the authors study a initial boundary value problems (IBVP) for space-time fractional conformable partial differential equation (PDE). Several inequalities of fractional conformable derivatives at extremum points are presented and proved. Based on these inequalities at extremum points, a new maximum principle for the space-time fractional conformable PDE is demonstrated. Moreover, the maximum principle is employed to prove a new comparison principle and estimation of solutions. Beside that, the uniqueness and continuous dependence of the solution of the space-time fractional conformable PDE are demonstrated.

    Citation: Tingting Guan, Guotao Wang, Haiyong Xu. Initial boundary value problems for space-time fractional conformable differential equation[J]. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312

    Related Papers:

  • In this paper, the authors study a initial boundary value problems (IBVP) for space-time fractional conformable partial differential equation (PDE). Several inequalities of fractional conformable derivatives at extremum points are presented and proved. Based on these inequalities at extremum points, a new maximum principle for the space-time fractional conformable PDE is demonstrated. Moreover, the maximum principle is employed to prove a new comparison principle and estimation of solutions. Beside that, the uniqueness and continuous dependence of the solution of the space-time fractional conformable PDE are demonstrated.



    加载中


    [1] Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Frac. Calc. Appl. Anal., 15 (2012), 141-160.
    [2] Y. Luchko, Initial-boundary-value problem for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548. doi: 10.1016/j.jmaa.2010.08.048
    [3] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223. doi: 10.1016/j.jmaa.2008.10.018
    [4] Y. Luchko, Maximum principle and its application for time-fractional diffusion equations, Frac. Calc. Appl. Anal., 14 (2011), 110-124.
    [5] Y. Luchko, M. Yamamoto, On the maximum principle for a time-fractional diffusion equations, Frac. Calc. Appl. Anal., 20 (2017), 1131-1145. doi: 10.1515/fca-2017-0060
    [6] M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Diff. Equ., 2017 (2017), 1-12. doi: 10.1186/s13662-016-1057-2
    [7] M. Al-Refai, Comparison principle for differential equations involving Caputo fractional derivative with Mittag-Leffler non-singular kernel, Electron. J. Differ. Eq., 2018 (2018), 1-10. doi: 10.1186/s13662-017-1452-3
    [8] G. Wang, X. Ren, D. Baleanu, Maximum principle for Hadamard fractional differential equations involving fractional Laplace operator, Math. Meth. Appl. Sci., 2019 (2019), 1-10.
    [9] M. Kirane, B. Torebek, Maximum principle for space and time-space fractional partial differential equations, Mahtematic, 2020 (2020), 1-24.
    [10] L. Cao, H. Kong, S. Zeng, Maximum principles for time-fractional Caputo-Katugampola diffusion equations, J. Nonlinear Sci. Appl., 10 (2017), 2257-2267. doi: 10.22436/jnsa.010.04.75
    [11] M. Kirane, B. Torebek, Extremum principle for Hadamard derivatives and its application to nonlinear fractional partial differential equations, Frac. Calc. Appl. Anal., 22 (2019), 358-378. doi: 10.1515/fca-2019-0022
    [12] M. Borikhanov, M. Kirane, B. Torebek, Maximum principle and its applications for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions, Appl. Math. Lett., 81 (2018), 14-20. doi: 10.1016/j.aml.2018.01.012
    [13] M. Borikhanov, B. Torebek, Maximum principle and its applications for the subdiffusion equations with Caputo-Fabrizio fractional derivative, Mate. Zhur., 18 (2018), 43-52.
    [14] L. Zhang, B. Ahmad, G. Wang, Analysis and application for diffusion equations with a new fractional derivative without singular kernel, Elec. J. Diff. Equa., 289 (2017), 1-6.
    [15] X. Cabr$\acute{e}$, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principle and Hamiltonian estimates, Anal. l'Ins. Henr. Poin. C, Anal. Line., 31 (2014), 23-53.
    [16] T. Guan, G. Wang, Maximum principles for the space-time fractional conformable differential system involving the fractional laplace opeartor, J. Math., 2020 (2020), 1-8.
    [17] A. Capella, J. D$\acute{a}$vila, L. Dupaigne, Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Part. Diff. Equa., 36 (2011), 1353-1384. doi: 10.1080/03605302.2011.562954
    [18] T. Cheng, C. Huang, C. Li, The maximum principles for fractional Laplacian equations and their applications, Comm. Cont. Math., 19 (2017), 1-12.
    [19] L. Del Pezzo, A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differ. Equations, 263 (2017), 765-778. doi: 10.1016/j.jde.2017.02.051
    [20] R. Agarwal, D. Baleanu, J. Nieto, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comp. Appl. Math., 339 (2018), 3-29. doi: 10.1016/j.cam.2017.09.039
    [21] J. Nieto, Maximum principles for fractional differential equations derived form Mittag-Leffler functions, Appl. Math. Lett., 23 (2010), 1248-1251. doi: 10.1016/j.aml.2010.06.007
    [22] H. Ye, F. Liu, V. Anh, I. Turner, Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations, Appl. Math. Comp., 227 (2014), 531-540. doi: 10.1016/j.amc.2013.11.015
    [23] Z. Liu, S. Zeng, Y. Bai, Maximum principles for the multi-term space-time variable-order fractional diffusion equations and their applications, Frac. Calc. Appl. Anal., 19 (2016), 188-211.
    [24] G. Wang, X. Ren, Z. Bai, W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137. doi: 10.1016/j.aml.2019.04.024
    [25] G. Wang, Twin iterative positive solutions of fractional q-difference Schrödinger equations, Appl. Math. Lett., 76 (2018), 103-109. doi: 10.1016/j.aml.2017.08.008
    [26] L. Zhang, W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149. doi: 10.1016/j.aml.2019.106149
    [27] G. Wang, X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560. doi: 10.1016/j.aml.2020.106560
    [28] L. Zhang, W. Hou, B. Ahmad, G. Wang, Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 2018.
    [29] L. Zhang, X. Nie, A direct method of moving planes for the Logarithmic Laplacian, Appl. Math. Lett., 118 (2021), 107141. doi: 10.1016/j.aml.2021.107141
    [30] L. Zhang, B. Ahmad, G. Wang, X. Ren, Radial symmetry of solution for fractional $p-$Laplacian system, Nonl. Anal., 196 (2020), 111801. doi: 10.1016/j.na.2020.111801
    [31] J. Korbel, Y. Luchko, Modeling of financial processes with a space-time fractional diffusion equation of varying order, Frac. Calc. Appl. Anal., 19 (2016), 1414-1433.
    [32] M. Alquran, F. Yousef, F. Alquran, T. Sulaiman, A. Yusuf, Dual-wave solutions for the quadratic-cubic conformable-Caputo time-fractional Klein-Fock-Gordon equation, Math. Comput. Simulat., 185 (2021), 62-76. doi: 10.1016/j.matcom.2020.12.014
    [33] I. Jaradat, M. Alquran, Q. Katatbeh, F. Yousef, S. Momani, D. Baleanu, An avant-garde handling of temporal-spatial fractional physical models, Int. J. Nonl. Sci. Numer. Simu., 21 (2020), 183-194. doi: 10.1515/ijnsns-2018-0363
    [34] I. Jaradat, M. Alquran, F. Yousef, S. Momani, D. Baleanu, On (2+1)-dimensional physical models endowed with decoupled spatial and temporal memory indices, Eur. Phys. J. Plus., 134 (2019), 360. doi: 10.1140/epjp/i2019-12769-8
    [35] H. Khan, T. Abdeljawad, C. Tunc, A. Alkhazzan, A. Khan, Minkowski's inequality for the AB-fractional integral operator, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
    [36] H. Khan, C. Tunc, A. Khan, Green functions properties and existence theorems for nonlinear singular-delay-fractional differential equations with p-Laplacian, Disc. Cont. Dyna. Syst. S., 13 (2020), 2475-2487.
    [37] H. Khan, C. Tunc, D. Baleanu, A. Khan, A. Alkhazzan, Inequalities for n- class of functions using the Saigo fractional integral operator, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, 113 (2019), 2407-2420. doi: 10.1007/s13398-019-00624-5
    [38] H. Khan, C. Tunc, W. Chen, A. Khan, Existence theorems and Hyers-Ulam stability for a class of Hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211-1226.
    [39] S. Zeng, S. Mig$\acute{o}$rski, V. Nguyen, Y. Bai, Maximum principles for a class of generalized time-fractional diffusion equations, Frac. Calc. Appl. Anal., 23 (2020), 822-835. doi: 10.1515/fca-2020-0041
    [40] F. Jarad, E. U$\check{g}$urlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2
    [41] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2379) PDF downloads(177) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog