Research article Special Issues

A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications

  • Received: 26 April 2023 Revised: 09 June 2023 Accepted: 25 June 2023 Published: 21 July 2023
  • MSC : 62E15

  • Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.

    Citation: Emrah Altun, Hana Alqifari, Mohamed S. Eliwa. A novel approach for zero-inflated count regression model: Zero-inflated Poisson generalized-Lindley linear model with applications[J]. AIMS Mathematics, 2023, 8(10): 23272-23290. doi: 10.3934/math.20231183

    Related Papers:

  • Count regression models are important statistical tools to model the discrete dependent variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers a new model as an alternative to the zero-inflated negative-binomial regression model. To do this, Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated Poisson generalized Lindley regression model. The results regarding the efficiency of parameter estimation of the proposed model are evaluated with two simulation studies. To evaluate the success of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results obtained, the proposed model gives better results than the negative-binomial regression model both in case of over-dispersion and in the case of zero inflation.



    加载中


    [1] E. Altun, D. Bhati, N. M. Khan, A new approach to model the counts of earthquakes: INARPQX (1) process, SN Appl. Sci., 3 (2021), 1–17. https://doi.org/10.1007/s42452-020-04109-8 doi: 10.1007/s42452-020-04109-8
    [2] E. Altun, A new two-parameter discrete poisson-generalized Lindley distribution with properties and applications to healthcare data sets, Comput. Stat., 36 (2021), 2841–2861. https://doi.org/10.1007/s00180-021-01097-0 doi: 10.1007/s00180-021-01097-0
    [3] E. Altun, A new generalization of geometric distribution with properties and applications, Commun. Stat.-Simu. Comput., 49 (2020), 793–807. https://doi.org/10.1080/03610918.2019.1639739 doi: 10.1080/03610918.2019.1639739
    [4] E. Altun, A new one-parameter discrete distribution with associated regression and integer-valued autoregressive models, Math. Slovaca, 70 (2020), 979–994. https://doi.org/10.1515/ms-2017-0407 doi: 10.1515/ms-2017-0407
    [5] E. Altun, A new model for over-dispersed count data: Poisson quasi-Lindley regression model, Math. Sci., 13 (2019), 241–247. https://doi.org/10.1007/s40096-019-0293-5 doi: 10.1007/s40096-019-0293-5
    [6] E. Altun, A new zero-inflated regression model with application, J. Stat.-Stat. Actuar. Sci., 11 (2018), 73–80.
    [7] E. Ayati, E. Abbasi, Modeling accidents on Mashhad urban highways, Open J. Safety Sci. Technol., 4 (2014), 22–35. https://doi.org/10.4236/ojsst.2014.41004 doi: 10.4236/ojsst.2014.41004
    [8] E. Avci, S. Alturk, E. N. Soylu, Comparison count regression models for overdispersed alga data, Int. J. Recent Res. Appl. Stud., 25 (2015), 1–5.
    [9] D. Bhati, P. Kumawat, E. Gómez-Déniz, A new count model generated from mixed Poisson transmuted exponential family with an application to health care data, Commun. Stat.-Theor. M., 46 (2017), 11060–11076. https://doi.org/10.1080/03610926.2016.1257712 doi: 10.1080/03610926.2016.1257712
    [10] A. C. Cameron, P. K. Trivedi, Regression analysis of count data, Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511814365
    [11] L. Cheng, S. R. Geedipally, D. Lord, The Poisson-Weibull generalized linear model for analyzing motor vehicle crash data, Safety Sci., 54 (2013), 38–42. https://doi.org/10.1016/j.ssci.2012.11.002 doi: 10.1016/j.ssci.2012.11.002
    [12] I. Elbatal, F. Merovci, M. Elgarhy, A new generalized Lindley distribution, Math. Theor. Model., 3 (2013), 30–47.
    [13] M. S. Eliwa, E. Altun, M. El-Dawoody, M. El-Morshedy, A new three-parameter discrete distribution with associated INAR (1) process and applications, IEEE Access, 8 (2020), 91150–91162. https://doi.org/10.1109/ACCESS.2020.2993593 doi: 10.1109/ACCESS.2020.2993593
    [14] M. El-Morshedy, E. Altun, M. S. Eliwa, A new statistical approach to model the counts of novel coronavirus cases, Math. Sci., 2021, 1–14. https://doi.org/10.1007/s40096-021-00390-9 doi: 10.1007/s40096-021-00390-9
    [15] M. El-Morshedy, M. S. Eliwa, E. Altun, Discrete Burr-Hatke distribution with properties, estimation methods and regression model, IEEE Access, 8 (2020), 74359–74370. https://doi.org/10.1109/ACCESS.2020.2988431 doi: 10.1109/ACCESS.2020.2988431
    [16] Y. Gencturk, A. Yigiter, Modelling claim number using a new mixture model: Negative binomial gamma distribution, J. Stat. Comput. Simu., 86 (2016), 1829–1839. https://doi.org/10.1080/00949655.2015.1085987 doi: 10.1080/00949655.2015.1085987
    [17] E. Gómez-Déniz, A new discrete distribution: Properties and applications in medical care, J. Appl. Stat., 40 (2013), 2760–2770. https://doi.org/10.1080/02664763.2013.827161 doi: 10.1080/02664763.2013.827161
    [18] A. Huang, Mean-parametrized Conway-Maxwell-Poisson regression models for dispersed counts, Stat. Model., 17 (2017), 359–380. https://doi.org/10.1177/1471082X17697749 doi: 10.1177/1471082X17697749
    [19] N. Ismail, H. Zamani, Estimation of claim count data using negative binomial, generalized Poisson, zero-inflated negative binomial and zero-inflated generalized Poisson regression models, In Casualty Actuarial Society E-Forum, 41 (2013), 1–28.
    [20] T. Imoto, C. M. Ng, S. H. Ong, S. Chakraborty, A modified Conway-Maxwell-Poisson type binomial distribution and its applications, Commun. Stat.-Theor. M., 46 (2017), 12210–12225. https://doi.org/10.1080/03610926.2017.1291974 doi: 10.1080/03610926.2017.1291974
    [21] Y. Kang, F. Zhu, D. Wang, S. Wang, A zero-modified geometric INAR (1) model for analyzing count time series with multiple features, Can. J. Stat., 2023. https://doi.org/10.1002/cjs.11774 doi: 10.1002/cjs.11774
    [22] D. Lord, S. P. Washington, J. N. Ivan, Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: Balancing statistical fit and theory, Accident Anal. Prev., 37 (2005), 35–46. https://doi.org/10.1016/j.aap.2004.02.004 doi: 10.1016/j.aap.2004.02.004
    [23] D. Lord, S. R. Geedipally, The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros, Accident Anal. Prev., 43 (2011), 1738–1742. https://doi.org/10.1016/j.aap.2011.04.004 doi: 10.1016/j.aap.2011.04.004
    [24] E. Mahmoudi, H. Zakerzadeh, Generalized Poisson-lindley distribution, Commun. Stat.-Theor. M., 39 (2010), 1785–1798. https://doi.org/10.1080/03610920902898514 doi: 10.1080/03610920902898514
    [25] J. Rodríguez-Avi, A. Conde-Sínchez, A. J. Sáez-Castillo, M. J. Olmo-Jiménez, A. M. Martínez-Rodríguez, A generalized Waring regression model for count data, Comput. Stat. Data Anal., 53 (2009), 3717–3725. https://doi.org/10.1016/j.csda.2009.03.013 doi: 10.1016/j.csda.2009.03.013
    [26] G. Shmueli, T. P. Minka, J. B. Kadane, S. Borle, P. Boatwright, A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution, J. Roy. Stat. Soc. C-Appl., 54 (2005), 127–142. https://doi.org/10.1111/j.1467-9876.2005.00474.x doi: 10.1111/j.1467-9876.2005.00474.x
    [27] A. J. Sáez-Castillo, A. Conde-Sánchez, A hyper-Poisson regression model for overdispersed and underdispersed count data, Comput. Stat. Data Anal., 61 (2013), 148–157. https://doi.org/10.1016/j.csda.2012.12.009 doi: 10.1016/j.csda.2012.12.009
    [28] M. M. Shoukri, M. H. Asyali, R. VanDorp, D. Kelton, The Poisson inverse Gaussian regression model in the analysis of clustered counts data, J. Data Sci., 2 (2004), 17–32. https://doi.org/10.6339/JDS.2004.02(1).135 doi: 10.6339/JDS.2004.02(1).135
    [29] J. Van den Broek, A score test for zero inflation in a Poisson distribution, Biometrics, 1995,738–743. https://doi.org/10.2307/2532959 doi: 10.2307/2532959
    [30] H. Zamani, N. Ismail, P. Faroughi, Poisson-weighted exponential univariate version and regression model with applications, J. Math. Stat., 10 (2014), 148–154. https://doi.org/10.3844/jmssp.2014.148.154 doi: 10.3844/jmssp.2014.148.154
    [31] W. Wongrin, W. Bodhisuwan, Generalized Poisson-Lindley linear model for count data, J. Appl. Stat., 44 (2017), 2659–2671. https://doi.org/10.1080/02664763.2016.1260095 doi: 10.1080/02664763.2016.1260095
    [32] A. Zeileis, C. Kleiber, S. Jackman, Regression models for count data in R, J. Stat. Softw., 27 (2008), 1–25. https://doi.org/10.18637/jss.v027.i08 doi: 10.18637/jss.v027.i08
    [33] L. Qian, F. Zhu, A flexible model for time series of counts with overdispersion or underdispersion, zero-inflation and heavy-tailedness, Commun. Math. Stat., 2023, 1–24. https://doi.org/10.1007/s40304-022-00327-1 doi: 10.1007/s40304-022-00327-1
    [34] W. Wongrin, W. Bodhisuwan, The Poisson-generalised Lindley distribution and its applications, Songklanakarin J. Sci. Technol., 38 (2016), 654–656.
    [35] C. H. Weiss, F. Zhu, A. Hoshiyar, Softplus INGARCH models, Stat. Sinica, 32 (2022), 1099–1120. https://doi.org/10.5705/ss.202020.0353 doi: 10.5705/ss.202020.0353
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1590) PDF downloads(190) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog