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Abstract: Count regression models are important statistical tools to model the discrete dependent
variable with known covariates. When the dependent variable exhibits over-dispersion and inflation at
zero point, the zero-inflated negative-binomial regression model is used. The presented paper offers
a new model as an alternative to the zero-inflated negative-binomial regression model. To do this,
Poisson generalized-Lindley distribution is re-parametrized and its parameter estimation problem is
discussed via maximum likelihood estimation method. The proposed model is called as zero-inflated
Poisson generalized Lindley regression model. The results regarding the efficiency of parameter
estimation of the proposed model are evaluated with two simulation studies. To evaluate the success
of the proposed model in the case of zero inflation, two datasets are analyzed. According to the results
obtained, the proposed model gives better results than the negative-binomial regression model both in
case of over-dispersion and in the case of zero inflation.
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1. Introduction

The Poisson distribution is a well-known distribution to model the count data sets. As widely
known, the mean and variance of the Poisson distribution are equal to each other. This property
of the Poisson distribution causes some problems in modeling the real-life data sets. In real-life
data modeling, the data sets are generally over-dispersed which means that the empirical variance
is greater than the empirical mean. In this case, the use of the Poisson distribution for these type
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of data sets yields the misspecification of the underlying probability distribution. Negative-Binomial
(NB) distribution is the first choice for modeling the over-dispersed count data sets. However, we need
more flexible discrete distributions to model highly over-dispersed count data sets. In the last decade,
several authors have proposed alternative discrete distributions to handle this problem, such as Shoukri
et al. [28], Shmueli et al. [26], Rodrı́guez-Avi et al. [25], Mahmoudi and Zakerzadeh [24], Lord and
Geedipally [23], Cheng et al. [11], Gómez-Déniz [17], Sáez-Castillo and Conde-Sánchez [27], Zamani
et al. [30], Gencturk and Yigiter [16], Bhati et al. [9], Imoto et al. [20], Wongrin and Bodhisuwan [31],
Altun [2–6], El-Morshedy et al. [14, 15], Altun et al. [1], Eliwa et al. [13].

The other phenomena in count data modeling is inflation. Inflation is seen generally at zero point
and called as zero-inflation. Zero-inflation means that the underlying data set contains too many zero
observations that cannot be represented by the corresponding distribution, such as Poisson and NB.
This situation is commonly seen in insurance and health sciences, such as loss frequency, number of
physicians visits, daily coronavirus cases etc. In this case, zero-inflated version of the Poisson and
NB regression models are used. These are called as zero-inflated Poisson (ZIP) and zero-inflated
negative-binomial (ZINB). Thanks to their software support, these models have been applied to real-
life problems by many researchers. For instance, a comparison of over-dispersed count data sets were
studied by Avci et al. [8]. Besides, Ismail and Zamani [19] conducted a study for applications of the
ZIP and ZINB models on the Malaysian own damage claim data. One can also visit the work of Lord et
al. [22] to see the application of these models on the crash data. Also, Ayati and Abbasi [7] investigated
the suitability of these models for the accidents on urban highways.

Here, the main purpose is to develop a new sophisticated model for the zero-inflated and/or over-
dispersed data sets. To do this, we use the Poisson generalized-Lindley (PGL) distribution, introduced
by Wongrin and Bodhisuwan [34]. The suitable re-parametrized version of the PGL distribution
is introduced and its statistical properties are studied. The maximum likelihood estimation (MLE)
method is preferred to estimate the unknown model parameters. The suitability of the MLE method
for estimating the parameters of the proposed model is discussed with simulation study. Two real data
sets are analyzed to prove the importance of the proposed distribution against the existing models such
as Poisson, NB regression models and their zero-inflated models.

The other parts of the study are organized as follows: The re-parametrized PGL distribution is
studied in Section 2. In Section 3, the parameter estimation problem is addressed with MLE and
the simulation study is given. Section 4 is devoted to introduce a new regression model for both
zero-inflated and over-dispersed cases. Section 5 contains the empirical results of the study. Some
conclusion remarks are given in Section 6.

2. Re-parametrization of Poisson generalized-Lindley distribution

Wongrin and Bodhisuwan [34] introduced PGL distribution by using the generalized-Lindley
distribution of Elbatal et al. [12]. Let the random variable Y follow the PGL distribution with
probability mass function (pmf)

P (y;α, β, θ) =
1

y!(θ + 1)y+1

[(
θ

θ + 1

)α θΓ (y + α)
Γ (α)

+

(
θ

θ + 1

)βΓ (y + β)
Γ (β)

]
, y = 0, 1, 2, ...,
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where Γ (·) is the gamma function and α, β, θ > 0. The mean and variance of Y are

E (Y) =
αθ + β

θ (θ + 1)
,

and

Var (Y) =
β [θ (−2α + θ + 2) + 1] + αθ

[
α + (θ + 1)2

]
+ β2θ

θ2(θ + 1)2 .

Now, we introduce a re-parametrized version of the PGL distribution to make it suitable distribution
for count regression model.

Proposition 1. Let β = θ (µθ + µ − α), then, the pmf of PGL distribution is

P (y;α, θ, µ) =
1

y!(θ + 1)y+1

[(
θ

θ + 1

)α θΓ (y + α)
Γ (α)

+

(
θ

θ + 1

)θ(µθ+µ−α) Γ (y + θ (µθ + µ − α))
Γ (θ (µθ + µ − α))

]
, (2.1)

where y = 0, 1, 2, ..., α > 0, θ > 0 and µ > 0. The mean and variance of Y are

E (Y) = µ,

and

V (Y) =
θ (µθ + µ − α) [θ (−2α + θ + 2) + 1] + αθ

[
α + (θ + 1)2

]
+ {θ (µθ + µ − α)}2θ

θ2(θ + 1)2 .

Hereinafter, the random variable Y refers to the re-parametrized PGL distribution given in (2.1) and
shortly denoted as PGL (α, θ, µ). Following the results of Wongrin and Bodhisuwan [34], the statistical
properties of the re-parametrized PGL distribution could be obtained easily. The pmf shapes of the
re-parametrized PGL distribution are displayed in Figure 1. From these figures, we conclude that this
distribution could be used to model zero-inflated, bimodal and right skewed count data sets.

The dispersion index (DI) is defined as DI = Var(X)/E(X). The DI shows the flexibility of the
distribution in modeling over(under)-dispersed data sets. When the DI is greater than one, it means
that the data set exhibits over-dispersion. The opposite case (DI < 1) indicates the under-dispersion.
The variance and DI plots of the PGL distribution are displayed in Figure 2 (for fixed α = 0.5). We
conclude the following results from Figure 2: When the parameter µ increases, dispersion index and
variance increase; when the parameter θ increases, dispersion index and variance decreases. The DI of
the PGL is always greater than one. So, the PGL distribution is an appropriate choice to model over-
dispersed data sets. Figure 3 shows the results of dispersion index and variance of the PGL distribution
for α = 1.5. The similar interpretation can be done as in the case of α = 0.5.
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Figure 1. The pmf shapes of PGL distribution.
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Figure 2. The dispersion index and variance of PGL distribution for α = 0.5.
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Figure 3. The dispersion index and variance of PGL distribution for for α = 1.5.

3. Estimation

In this section, the parameters of PGL distribution are obtained by MLE method. The
appropriateness of the MLE method is evaluated by simulation study.

3.1. Maximum likelihood estimation

Assume that we have a random sample, y1, y2, . . . , yn, from the PGL distribution. Then, the log-
likelihood function of the PGL distribution is

` (τττ) =
n∑

i=1
ln

[(
θ
θ+1

)α θΓ(yi+α)
Γ(α) +

(
θ
θ+1

)θ(µθ+µ−α) Γ(yi+θ(µθ+µ−α))
Γ(θ(µθ+µ−α))

]
−

n∑
i=1

ln
[
yi!(θ + 1)yi+1

] . (3.1)

where τττ = (α, θ, µ) is the unknown parameter vector. The score vector components can be obtained
by taking partial derivatives of (3.1) with respect to α, θ, µ. The likelihood equation does not have the
explicit solution. In this case, we should prefer the direct maximization of the log-likelihood function
given in (3.1). For this purpose, the optimization toolboxes of the R, S-Plus or Matlab can be used. The
nlm function of the R software is used in this study. To construct the asymptotic confidence intervals,
we need the observed information matrix whose elements are given by

IF(τττ) = −


Iαα Iαθ Iαµ
Iθα Iθθ Iθµ
Iµα Iµθ Iµµ

 . (3.2)

Since the second derivatives of the log-likelihood function are complicated, these equations are
omitted, however, these are upon request from the authors. The inverse of the observed information
matrix evaluated at τ̂ττ gives the asymptotic variance-covariance matrix. The asymptotic standard errors
are obtained by the inverse of (3.2). Then, the asymptotic confidence intervals of the parameters are
given by

α̂ ± zp/2

√
Var(α̂), θ̂ ± zp/2

√
Var(θ̂), µ̂ ± zp/2

√
Var(µ̂),

where zp/2 represents the left quantile value of the standard normal distribution at p/2.
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3.2. Simulation

Now, we conduct a simulation study to see the finite-sample performance of the MLEs of the
parameters of the PGL distribution. The below simulation steps are implemented.

(1) Determine the sample size n, simulation replication N and the parameter values of the PGL
distribution, α, θ and µ.

(2) Using the parameter settings in Step 1, generate the random variables from the PGL distribution
using the inverse transform method.

(3) Using the generated sample in Step 2, obtain the MLEs of the parameters α, θ and µ.

(4) Repeat N times the Steps 2 and 3.

(5) Using the MLEs and the true parameter values, compute the estimated values of biases, mean
square errors (MSEs) and mean relative estimates (MREs). The required formulas for these
measures can be found in Altun [5].

The simulation results are displayed in Figure 4. We determine the simulation replication N =

10, 000 and the sample size n = 50, 55, 60, . . . , 500. The true parameter values are τ = (2, 2, 5). We
expect to see that when the sample size becomes larger, the biases and MSEs should be near zero and
MRE should be near one. From the results given in Figure 4, we conclude that the estimated biases
and MSEs are near the zero. Also, as expected, the MREs are near the one. These results show that the
MLE is an appropriate method to estimate the unknown parameters of the PGL distribution.
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Figure 4. The graphical simulation results of the PGL distribution.
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Additionally, two different parameter settings are evaluated to check whether the similar results
are obtained for the different parameter vectors. The results are reported in Table 1. As in
previous simulation study, the biases are near zero and MSE and MRE approach their desired values.
Consequently, MLE is effective parameter estimation method for the PGL distribution.

Table 1. The simulation results of the PGL distribution for two different parameter settings.

Sample size Parameters
(α = 2, θ = 1, µ = 5) (α = 3, θ = 2, µ = 4)
α θ µ α θ µ

n=50
Bias 0.4814 0.1297 -0.0321 0.2415 0.1503 -0.0631
MSE 0.8389 0.3301 0.3394 0.9317 0.7125 0.3579
MRE 1.2408 1.1297 0.9936 1.0805 1.0751 0.9842

n=250 Bias 0.0548 0.0134 -0.0202 0.0699 0.0423 -0.0172
MSE 0.4491 0.0746 0.0761 0.3785 0.1035 0.0685
MRE 1.0274 1.0134 0.9960 1.0233 1.0211 0.9957

n=500
Bias 0.0234 0.0047 -0.0146 0.0245 0.0209 -0.0164
MSE 0.2180 0.0354 0.0366 0.1624 0.0445 0.0335
MRE 1.0117 1.0047 0.9971 1.0082 1.0105 0.9959

4. Poisson generalized-Lindley regression model

As mentioned before, the Poisson regression model does not work well in case of over-dispersion.
Dealing with the over-dispersed data set, the first choice is NB regression model. Now, we introduce
an alternative regression model to the NB regression model for modeling the highly over-dispersed
data sets. Assume that Y is a random variable distributed as a PGL distribution, given in (2.1). Since
the mean of Y is E (Y |α, θ, µ) = µ, the log-link function can be used to link the covariates to the mean
of the PGL distribution, as follows

µi = exp
(
xxxT

i βββ
)
, i = 1, ..., n, (4.1)

where xxxT
i = (1, xi1, xi2, ...xik) represents the covariates and βββ = (β0, β1, β2, ...βk)T represents the

regression parameters. Note that the log-link function is used to link the covariates to the mean of
the response variable. Since the mean of the response variable is defined on the positive domain, the
link function should convert the observations defined on R to R+. However, the log-link function is
not the only option to do this transformation. The softplus function, proposed by Weiss et al. [35], can
be used as an alternative to the log-link function. Replacing µ in (2.1) with (4.1), the log-likelihood
function of the PGL regression model is

` (α, θ,βββ) =
n∑

i=1
ln


(

θ
θ+1

)α θΓ(yi+α)
Γ(α) +

(
θ
θ+1

)θ(exp(xxxT
i βββ)θ+exp(xxxT

i βββ)−α)

×
Γ(yi+θ(exp(xxxT

i βββ)θ+exp(xxxT
i βββ)−α))

Γ(θ(exp(xxxT
i βββ)θ+exp(xxxT

i βββ)−α))


−

n∑
i=1

ln
[
yi!(θ + 1)yi+1

]
.

(4.2)
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The parameters α and θ are the distributional parameters and βββ = (β0, β1, β2, ...βk) is the vector
of unknown regression parameters. These parameters are estimated by direct maximization of (4.2).
The nlm function of R software is used to minimize the minus of (4.2), which is equivalent to the
maximization of (4.2). The standard errors of the estimated parameters are obtained by means of
hessian matrix evaluated at the MLEs of the parameters. The elements of the hessian matrix are
computed with fdHess function of R software. The elements of the hessian matrix consist of the
second-order partial derivatives of the log-likelihood function. Since these derivatives are complicated,
they are omitted and not presented in the study.

4.1. Simulation of PGL regression model

Now, we evaluate the suitability of the MLE method for estimating the parameters of the PGL
regression model. The simulation replication number N is determined as 10, 000 and four sample sizes
are used: n = 50, 250, 500, 1000. Using the log-link function, we generate random variables using the
ln (µi) = β0 +β1xi1 +β2xi2 with parameters β0 = 0.5, β1 = 0.5, β2 = 0.5 and θ = 1, α = 1. The covariates
are generated from the standard uniform distribution. The response variable, yi, is generated based on
the values of µi, α and θ. The simulation results are listed in Table 2. The average of estimates (AEs)
are near the true parameter values for small and large sample sizes. The biases and MSEs are near the
desired values. These results confirm the consistency property of the MLEs.

Table 2. The simulation results of PGL regression model.

Sample size Parameters β0 β1 β2 θ α

n=50
AE 0.4967 0.4973 0.4778 1.1607 1.3993

MSE 0.0860 0.1402 0.1349 0.2728 0.8066

n=250
AE 0.5056 0.4935 0.4944 1.0620 1.1438

MSE 0.0270 0.0452 0.0419 0.1381 0.2302

n=500
AE 0.4999 0.4826 0.5031 1.0359 1.0569

MSE 0.0135 0.0225 0.0212 0.0687 0.1110

n=1000
AE 0.5012 0.4986 0.4953 1.0057 1.0109

MSE 0.0064 0.0118 0.0097 0.0293 0.0413

Additionally, we compare the standard deviations of the estimators based on the simulated samples
and fdHess function. The sample function of R software is use to generate bootstrap samples. The
bootstrap samples are used to calculate the bootstrap standard errors of the model parameters. The
bootstrap replication number is determined as 1, 000. The model parameters are β0 = 0.5, β1 =

0.5, β2 = 0.5 and θ = 2, α = 2. The simulation results are reported in Table 3. The results show that
the obtained standard errors using two different approaches are close to each other. Thus, it is verified
that the fdHess function works well to obtain the asymptotic standard errors of the model parameters.
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Table 3. Comparison of standard errors of the estimated parameters using bootstrap
methodology and fdHess function.

Sample size Standard Errors
Parameters

β0 β1 β2 θ α

n=50 fdHess 0.2514 0.3089 0.3157 0.6405 0.8302
Bootstrap 0.2834 0.3528 0.3320 0.5448 0.7137

n=250 fdHess 0.1573 0.1900 0.1921 0.4134 0.5405
Bootstrap 0.1607 0.1975 0.1767 0.3969 0.5589

n=500 fdHess 0.1035 0.1261 0.1255 0.2773 0.3624
Bootstrap 0.1284 0.0798 0.1555 0.1938 0.2992

4.2. Zero-inflated PGL regression model

The ZIP and ZINB regression models are the most widely used models in case of the zero-inflation.
ZINB regression model could be more appropriate choice in most cases since Poisson distribution does
not model the over-dispersion. The zero-inflated Poisson distribution is given by

P(y; λ) =

 w + (1 − w)e−λ, y = 0,
(1 − w)λ

ye−λ
y! , y > 0,

(4.3)

where 0 ≤ w ≤ 1. It is easy to see that when the w = 0, the zero-inflated Poisson distribution reduces
to Poisson distribution. As in PGL regression model, the mean of Poisson distribution, λi, is linked to
covariates by means of log-link function. The probability of zero counts, wi is linked to covariates by
means of logit-link function which is given by

ln
(

wi

1 − wi

)
= zzzT

i γγγ, (4.4)

where zzzT
i = (1, zi1, zi2, ...zik) is the vector of covariates and γγγ = (γ0, γ1, γ2, ...γk)T is the unknown vector

of regression coefficients for zero process. The log-likelihood function of ZIP regression model is
given by

` (βββ,γγγ) =
∑

yi=0
ln

[
exp

(
zzzT

i γγγ
)

+ exp
(
− exp

(
xxxT

i βββ
))]

+
∑

yi>0

[
yixxxT

i βββ − exp
(
xxxT

i βββ
)
− ln (yi!)

]
−

n∑
i=1

ln
([

1 + exp
(
zzzT

i γγγ
)])
.

(4.5)

The log-likelihood function given in (4.5) can be maximized by means of nlm function of R.
As mentioned before, when the corresponding data displays over-dispersion, the negative-binomial
regression model should be used. The pmf of zero-inflated negative-binomial distribution is given by

P (y; w, λ, τ) =


w + (1 − w)

(
1 + λ

τ

)−τ
, y = 0,

(1 − w) Γ(y+τ)
y!Γ(τ)

(
1 + λ

τ

)−τ(
1 + τ

λ

)−y
, y > 0,

(4.6)
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where τ is the shape parameter. When w = 0, the zero-inflated negative-binomial distribution reduces
to negative-binomial distribution. The log-likelihood function of ZINB regression model is given by

` (βββ,γγγ, τ) =
n∑

i=1
ln

(
1 + exp

(
zzzT

i γγγ
))
−

∑
yi=0

ln
(
exp

(
zzzT

i γγγ
)

+

(
exp(xxxT

i βββ)+τ

τ

)−τ)
+

∑
yi>0

(
τ ln

(
exp(xxxT

i βββ)+τ

τ

)
+ yi ln

(
1 + exp

(
xxxT

i βββτ
)))

+
∑

yi>0
(ln Γ (τ) + ln Γ (yi + 1) − ln Γ (yi + τ)) .

(4.7)

The log-likelihood given in (4.7) can be maximized with nlm function of R software. Here, an
alternative zero-inflated regression model is introduced based on the zero-inflated PGL distribution.
The pmf of zero-inflated PGL distribution is given by

P (y; w, α, θ, µ) =


w + (1 − w)

[(
θ
θ+1

)α+1
+ θθ(µθ+µ−α)

(θ+1)θ(µθ+µ−α)+1

]
, y = 0,

(1 − w) 1
y!(θ+1)y+1


(

θ
θ+1

)α θΓ(y+α)
Γ(α) +(

θ
θ+1

)θ(µθ+µ−α) Γ(y+θ(µθ+µ−α))
Γ(θ(µθ+µ−α))

 , y > 0,
(4.8)

where 0 ≤ w ≤ 1 and α > 0, θ > 0 and µ > 0. Inserting (4.1) and (4.4) in (4.8), the log-likelihood
function of zero-inflated PGL (ZIPGL) regression model is given by

` (βββ,γγγ, α, θ) =
∑

yi=0
ln

(
exp(zzzT

i γγγ)
1+exp(zzzT

i γγγ)
+ 1

1+exp(zzzT
i γγγ)

[(
θ
θ+1

)α+1
+ θ

θ(exp(xxxT
i βββ)θ+exp(xxxT

i βββ)−α)
(θ+1)θ(exp(xxxT

i βββ)θ+exp(xxxT
i βββ)−α)+1

])
∑

yi>0
ln

 1
[1+exp(zzzT

i γγγ)]yi!(θ+1)yi+1


(

θ
θ+1

)α θΓ(yi+α)
Γ(α)

+
(

θ
θ+1

)θ(exp(xxxT
i βββ)θ+exp(xxxT

i βββ)−α)

×
Γ(yi+θ(exp(xxxT

i βββ)θ+exp(xxxT
i βββ)−α))

Γ(θ(exp(xxxT
i βββ)θ+exp(xxxT

i βββ)−α))




. (4.9)

The unknown parameters, α, θ, βββ = (β0, β1, β2, ...βk) and γγγ = (γ0, γ1, γ2, ...γk)T are obtained by
maximizing the (4.9) with nlm function of R software.

5. Empirical study

In this section, two real data sets are analyzed to show the flexibility of the PGL regression model
against the Poisson and NB regression models and also their zero-inflated counterparts. Also, we
compare the PGL model with NPGL model, proposed by Altun [2]. In statistics literature, there are
many discrete distributions to models the over or under-dispersed count data sets. Some of these
distributions can be cited as follows: Mean Conway-Maxwell-Poisson distribution by Huang [18],
zero-modified geometric by Kang et al. [21] and generalized COM-Poisson by Qian and Zhu [33].
The best model for the fitted data is chosen according to the results of the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC). The lowest values of the AIC and BIC indicate the
best model for the data used.

5.1. Absences of high school students

The first data set comes from the daily number of absences of 316 high school students. We model
the daily number of absences with some covariates such as gender and type of instructional program.
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The same data set was analyzed by Altun [5]. The female individuals are coded 1 and male individuals
are coded 0. The gender is represented by the covariate (x1). The instructional program variable has
three categories. These are general, academic and vocational. Therefore, one of them is determined
as the baseline category and two dummy variables are created. The baseline category is selected as
the vocational program. The general program (x2) and academic program (x3) are used as two dummy
variables. The below regression structure is fitted to the data set.

µi = exp (β0 + β1x1i + β2x2i + β3x3i) . (5.1)

The probability distribution of the response variable, number of absence, is displayed in Figure 5(a).
The mean and variance of the response variable are 5.955 and 49.518, respectively. Since the DI is
greater than one, it is concluded that the response variable exhibits over-dispersion. Cameron and
Trivedi [10] proposed a test to evaluate the over-dispersion. The dispersiontest function of R software
is used to perform over-dispersion test of Cameron and Trivedi [10]. The obtained test statistic value
is z = 6.679 and corresponding p value is < 0.001. This result verifies the over-dispersion problem in
response variable.
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Figure 5. The probability distributions of (a) days of absence of students and (b) number of
physician visits.

The estimated parameters with corresponding standard errors (SEs) and goodness of fit statistics are
listed in Table 4. From Table 4, since the PGL regression model has the lowest values of AIC and BIC,
we conclude that the PGL performs better than Poisson, NB and NPGL regression models.
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Table 4. The estimated parameters of the fitted count regression models for the number of
absence data.

Covariates
Poisson NB NPGL PGL

Estimate (SE) SE p-value Estimate SE p-value Estimate SE p-value Estimate SE p-value

β0 1.323 0.089 <0.001 1.271 0.214 <0.001 1.272 <0.001 1.515 0.192 <0.001
β1 -0.234 0.047 <0.001 -0.193 0.123 0.118 -0.195 0.011 -0.233 0.101 0.022
β2 1.374 0.076 <0.001 1.362 0.199 <0.001 1.365 <0.001 1.206 0.156 <0.001
β3 0.957 0.066 <0.001 0.949 0.140 <0.001 0.951 <0.001 0.708 0.152 <0.001

τ - - - 1.017 0.104 - - - - - - -
α - - - - - - - - 0.177 0.022 -
θ - - - - - - 1.059 0.136 - 1.040 0.459 -

−` 1343.250 867.225 881.409 862.480
AIC 2694.500 1744.449 1772.818 1736.960
BIC 2709.498 1763.196 1791.565 1759.456

As seen from estimated regression coefficients of PGL regression model, we conclude that the
gender, academic and instructional programs variables have statistically significant effects (at 1% level)
on the days of absence for high school students. The number of absences for female students are
exp (−0.233) = 0.792, that is 20.8% lower than male students. It means that male students have
higher absences than female students. However, the number of absences for general and academic
instructional program students are exp (1.206) = 3.340 that is 234% and exp (0.708) = 2.029 ,that is
102.9% higher than the vocational instructional program students.

The profile log-likelihood plots of the PGL regression model are displayed in Figure 6. These
figures are helpful to evaluate the suitability of the estimated model parameters. Thanks to the profile
log-likelihood plots, it is obvious that the estimated parameters of the PGL model are the maximizers
of the log-likelihood function.
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Figure 6. Profile log-likelihood plots of the PGL regression model.
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The residual analysis is also applied to check the model suitability for the fitted data set. To do this,
the randomized quantile residuals (rqs) are used. The rqs is

rq,i = Φ−1 (ui) , (5.2)

where ui = F (yi; µ̂i) is uniformly distributed random variable between ai = limy↑yi F (y; µ̂i) and bi =

F (y; µ̂i) (Altun, [2]). Note that F (y; µ) is the cdf of PGL distribution. If the model is statistically valid
for the data set, the rqs follows the standard normal distribution. The index and quantile-quantile plots
of the PGL regression model are displayed in Figure 7. These figures show that the PGL regression
model provides perfect fit to the data.

(a) (b)

0 50 100 150 200 250 300

−
4

−
2

0
2

4

Index

r
i

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Normal Quantiles

r
i

Figure 7. Residual analysis of PGL regression model.

5.2. NMES

The second data comes from the US National Medical Expenditure Survey (NMES) in the years
of 1987–1988. The data set has 4406 observations. It can also be found in the countreg package
of R software ( see Zeileis et al. [32]). Here, our goal is to model the number of physician visits y,
with following variables: number of hospital stay, (x1), number of chronic conditions, (x2), gender
(female=0, male=1) (x3), number of years of education, (x4) and indicator of private insurance (yes=1,
no=0), (x5). The following model is fitted to NMES data set using the zero-inflated Poisson, negative
binomial and PGL regression models.

log (µi) = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i,

logit (wi) = γ0 + γ1z1i + γ2z2i + γ3z3i + γ4z4i + γ5z5i.
(5.3)

The histogram of the number of physician visits are displayed in Figure 5(b). The mean and variance
of the number of physician visits are 5.774 and 45.687, respectively. Since the DI of the response
variable is greater than one, it exhibits over-dispersion. As in Section 5.1, the over-dispersion test of
Cameron and Trivedi [10] is performed. The obtained test statistic value is z = 6.679 and corresponding
p value is < 0.001. Therefore, the response variable has a over-dispersion. As seen from Figure 5(b),
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the response variable is highly peaked at zero. To assess the zero-inflation, the test proposed by Van
den Broek [29] is used. The zero.test is used for this purpose. The test statistic follows a chi-square
distribution with one degree of freedom. The obtained test statistic value is χ2 = 33438.09 and its
p-value is < 0.001. This result verifies that the frequency of zero process in response variable cannot
be modeled by Poisson regression model. Therefore, zero-inflated regression models are needed to
model such data sets. The AIC and BIC of the fitted count regression models are listed in Table 5.
Since the data exhibits both over-dispersion and zero-inflation, Poisson and NB regression models do
not perform well. According to the AIC and BIC values, PGL and ZIPGL models perform better than
other models for NMES data set.

Table 5. Comparison of models for NMES data.

Poisson NB PGL ZIP ZINB ZIPGL
AIC 36314.70 24430.48 24263.38 32611.14 24286.48 24244.30
BIC 36353.04 24475.22 24314.51 32687.83 24369.56 24333.77

The estimated parameters of the fitted models as well as their standard errors are summarized in
Table 6. Zero-inflated regression models have two parts to interpret. These parts are related the non-
inflated and zero-inflated processes. As mentioned before, non-inflated process is modeled with log-
link function and zero-inflated process is modeled by logit-link function. Therefore, the regression
coefficients of zero-inflated process can be interpreted as odd ratio. As seen from estimated regression
coefficients of ZIPGL regression model, for non-inflated process, all variables have statistically
significant (at 1% level) effect on number of physician visits. According to zero-inflated process,
number of chronic conditions and privative insurance variables have statistically significant effects on
number of physician visits. Having private insurance decreases the odds of not having the opportunity
of physician visits by exp (−1.174) = 0.309, which is 69.1%.
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As in the previous section, the profile log-likelihood plots are displayed to check the correctness of
the estimated model parameters. According to the plots in Figure 8, the estimated model parameters
of the ZIPGL model are the maximizers of the function, given in (4.9).
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Figure 8. Profile log-likelihood plots of the ZIPGL regression model.
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6. Conclusions

This study introduces a new count regression model for zero-inflated and over-dispersed count data
sets based on the re-parametrization of the PGL distribution. The PGL regression model and its zero-
inflated counterpart are studied. Two real data sets are analyzed to convince the readers in favor of
the PGL regression model against the Poisson and NB regression models. Empirical findings show
that PGL and ZIPGL regression models provide better fits than Poisson, ZIP, NB and ZINB regression
models. As a future work of this study, one-inflated PGL regression model could be considered. The
one-inflated regression models are useful for modeling the claim numbers in insurance. We hope that
the PGL and ZIPGL regression models find a wider application area in different applied sciences.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The second author would like to thank the Deanship of Scientific Research at Qassim University
for funding the publication of this project.

Conflict of interest

The authors have no conflicts of interest.

References

1. E. Altun, D. Bhati, N. M. Khan, A new approach to model the counts of earthquakes: INARPQX
(1) process, SN Appl. Sci., 3 (2021), 1–17. https://doi.org/10.1007/s42452-020-04109-8

2. E. Altun, A new two-parameter discrete poisson-generalized Lindley distribution with
properties and applications to healthcare data sets, Comput. Stat., 36 (2021), 2841–2861.
https://doi.org/10.1007/s00180-021-01097-0

3. E. Altun, A new generalization of geometric distribution with properties
and applications, Commun. Stat.-Simu. Comput., 49 (2020), 793–807.
https://doi.org/10.1080/03610918.2019.1639739

4. E. Altun, A new one-parameter discrete distribution with associated regression and integer-valued
autoregressive models, Math. Slovaca, 70 (2020), 979–994. https://doi.org/10.1515/ms-2017-0407

5. E. Altun, A new model for over-dispersed count data: Poisson quasi-Lindley regression model,
Math. Sci., 13 (2019), 241–247. https://doi.org/10.1007/s40096-019-0293-5

6. E. Altun, A new zero-inflated regression model with application, J. Stat.-Stat. Actuar. Sci., 11
(2018), 73–80.

7. E. Ayati, E. Abbasi, Modeling accidents on Mashhad urban highways, Open J. Safety Sci. Technol.,
4 (2014), 22–35. https://doi.org/10.4236/ojsst.2014.41004

AIMS Mathematics Volume 8, Issue 10, 23272–23290.

http://dx.doi.org/https://doi.org/10.1007/s42452-020-04109-8
http://dx.doi.org/https://doi.org/10.1007/s00180-021-01097-0
http://dx.doi.org/https://doi.org/10.1080/03610918.2019.1639739 
http://dx.doi.org/https://doi.org/10.1515/ms-2017-0407
http://dx.doi.org/https://doi.org/10.1007/s40096-019-0293-5 
http://dx.doi.org/https://doi.org/10.4236/ojsst.2014.41004 


23289

8. E. Avci, S. Alturk, E. N. Soylu, Comparison count regression models for overdispersed alga data,
Int. J. Recent Res. Appl. Stud., 25 (2015), 1–5.
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