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1. Introduction

Let R™*2 be the real vector space R"*? with the Lorentzian product (, ), given by the following:

K} n+2
(X, Y); =~- Z Xiyi + 2 Xy
i=1 j=s+1

Let R"*? denote the (n + 2)-dimensional Euclidean space and a dot - represent its inner product. For
any a > 0, the standard sphere S"*'(a), the hyperbolic space H"*'(—a), the de sitter space S7*'(a) and
the anti-de sitter space H*!(—a) are defined by the following:

§"(@) = (x e R"™|x - x = a®), H™!(=a) = {x e RI"*|x, x); = —a?},

S™(a) = {x € RM2x, x); = @*), H!'(—a) = {x € RI|(x, x), = —a?}.
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Let M"*'(c) be the Lorentz space form with constant sectional curvature ¢ with respect to its
standard Lorentzian metric. When ¢ = 0, M{*'(c) = RI*'. When ¢ = 1, M7*!(¢) = S"*'(1). When
c=-1, M (c) = HI"'(-1).

A diffeomorphism @ : M?“(c) — M{’“(c) is called a conformal transformation, if ®*h = €>"h
for some smooth function 7 on M’f“(c), where /1 denotes the standard Lorentzian metric of M;l“(c).
All conformal transformations form a transformation group, which is called the conformal group of
M7+ (c). In [2], X. Ji et al. studied the conformal geometry of spacelike hypersurfaces in the Lorentz
space form M"*!(c). They defined the conformal metric g and the conformal second fundamental
form B on a spacelike hypersurface, which determined the spacelike hypersurface up to a conformal
transformation of M?*!(c). Since the conformal geometry of spacelike hypersurfaces in Lorentzian
space forms M*'(c) is uniform by the conformal map (2.1), in this paper, we only consider the
conformal geometry of spacelike hypersurfaces in the Lorentzian space R}*'.

Let f : M" — R}*' be an n-dimensional umbilic-free spacelike hypersurface in R}*!, and let
I = {df,df), be the induced metric, /1 be the second fundamental form and H be the mean curvature.
The conformal metric g and the conformal second fundamental form B of the hypersurface are defined
by, respectively,

g = pXdf.dfn = —= (P = nH), B=p ) (Il - HD), (1.1)
)

which form a complete conformal invariant of the spacelike hypersurface when the dimension of the
spacelike hypersurface n > 3 (see Section 2). In the conformal geometry of spacelike hypersufaces, a
notable class of spacelike hypersurfaces are those with constant conformal sectional curvature (i.e.,
constant sectional curvature with respect to the conformal metric g). In [2], the authors have
classified the spacelike hypersurfaces with constant conformal sectional curvature up to a conformal
transformation of R7*!.

Theorem 1.1. Let f : M" — R’l”l, (n > 3), be an umbilic-free spacelike hypersurface with constant
conformal sectional curvature & in R’f”. Then, f is locally conformally equivalent to one of the
following hypersurfaces:

1) a cylinder over a curvature-spiral in a Lorentzian 2-plane R? (where 6 < 0);
2) a cone over a curvature-spiral in a de sitter 2-sphere ST C R) (where ¢ < 0);
3) a rotational hypersurface over a curvature-spiral in a Lorentzian hyperbolic 2-plane R, C R? (the
constant curvature ¢ could be positive, negative or zero); and
4) a cone over the hyperbolic torus H!(- Va2 — 1) x S'(a), a > 1 (where 6 = 0).

The curvature-spiral y(s) in a 2-dimensional Lorentzian space form M7(c) is determined by the
following intrinsic equation:

[ d1

where s is the arc-length parameter, and « denotes the geodesic curvature of the spacelike curve y, and
0 is a real constant. The definition of the Lorentzian hyperbolic n-plane R}, C R is given in Section 3.

Another notable class of spacelike hypersurfaces are those with a constant conformal Ricci
curvature (i.e., constant Ricci curvature with respect to the conformal metric g), which is called
a conformal Einstein hypersurface. Clearly, the spacelike hypersurface with a constant conformal

2 2
—] = -, (1.2)
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sectional curvature is a conformal Einstein hypersurface, but the converse may not be true when the
dimension of the spacelike hypersurface n > 4. In this paper, our goal is to classify these conformal
Einstein hypersurfaces of dimension n > 4. We note that some of such examples come from cones,
cylinders, or rotational hypersurfaces over the spacelike (A, n)-surfaces in the 3-dimensional Lorentzian
space forms S?(l), R3, R? .» respectively, so we first give the definition of the spacelike (4, n)-surface as
follows.

Definition 1.1. Let u : M*> — M;(c) be an umbilic-free spacelike surface in M;(c), and let 1,, H,, K,
be the induced metric, the mean curvature, the Gauss curvature of u, respectively. Let Hess be the
Hessian operator with respect to I, and V the gradient with respect to 1. For a positive integer n > 4,
let

1
A= .
\/4H5 ~ 2K, +0)

The surface u is called an (4, n)-surface for some A=constant, if the Hessian matrix and the gradient
of the function A satisfy the following equations:
-3)cA -K,A A? -3)c - 2K, A
Hess(A) = L3¢ L. VAR = Al =3 I .
n—-2 n—1Dn-=-2) n—1

Our main result is given as follows.

Theorem 1.2. Let f : M" — R’f”(n > 3) be a spacelike conformal Einstein hypersurface without
umbilical points in R’l’“. Then, f is locally conformally equivalent to one of the following spacelike
hypersurfaces:

1) spacelike hypersurfaces with constant conformal sectional curvature;
2) the spacelike hypersurface

f:H"(— %)XH”"“(— w/”;#21)—>H';+1(—1), l<k<n-—1;

3) a cylinder over a spacelike (1, n)-surface in R?, (n > 4);
4) a cone over a spacelike (A, n)-surface in S?(l), (n > 4); and
5) a rotational hypersurface over a spacelike (1, n)-surface in R3, (n > 4).

The rest of this paper is organized as follows. In Section 2, we study the conformal geometry of
spacelike hypersurfaces in R"*!. In Section 3, we construct some examples of the spacelike conformal
Einstein hypersurfaces. In Section 4, we give the proof of the classification Theorem 1.2.

2. Conformal geometry of spacelike hypersurfaces
In this section, we recall some conformal invariants of a spacelike hypersurface and give a congruent
theorem of the spacelike hypersurfaces under the conformal transformation group of R}*!. For details

readers refer to [2—4].
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Let C"*2 be the cone in R3** and Q/*' the conformal compactification space in RP"** defined by the
following:

C"? = (X e RFKX, X); = 0,X # 0}, Q"' = {[X] € RP"|(X, X), = 0}.

Let O(n + 3,2) be the Lorentzian group of the Rg” keeping (, ), invariant. O(n + 3,2) is also a
transformation group of Q}*' and the action is defined by the following:

T(X) =[XT), XeC"?, TeOn+3,2).

Topologically, Q}*! is identified with the compact space S"x S'/S", which is endowed by a standard
Lorentzian metric h = gs» ® (—gs1), where g« denotes the standard metric of the k-dimensional sphere
SK. Therefore, Q’i‘“ has the conformal metric class [4] and [O(n+ 3, 2)] is the conformal transformation
group of Q*!(see [1,5]).

Let X = (x1,---, %w3) € R37, P = {[X] € Q}""x1 = 13}, P~ = {[X] € Q"' |x03 = 0}, P, = {[X] €
Q1*!'x; = 0}, we can define the following conformal diffeomorphisms:

oot RIS QUTNP we [(FGEy, ),
o1 S - QPP us (L)), 2.1

o H?”(—l) — Q’{”\P_, u v [(u,1)].

We may regard Q*! as the common compactification of R*!, S7+!(1), H*!(-1).
Let f : M" — M*'(c) be a spacelike hypersurface. Using o, we obtain the hypersurface o o f :
M" — Q"' in Q}*'. From [1,2], we have the following theorem.

Theorem 2.1. [2] Two hypersurfaces f, f : M" — M"*'(c) are conformally equivalent if and only if
there exists T € O(n + 3,2) such that o, 0 f = T(op0 f) : M" — Q’l‘“.

Let f: M" — R’f“ be an umbilic-free spacelike hypersurface, /1 be the second fundamental form,
and H be the mean curvature; then, the conformal position vector ¥ : M" — Rg” of the spacelike
hypersurface f is defined by the following:

<f’f>l+1 <f’f>l_1
2 2

n
Y = . ). #* = —— (P~ nlHP).

Theorem 2.2. [2] Two spacelike hypersurfaces f, f : M" — R’f“ are conformally equivalent if and
only if there exists T € O(n + 3,2) such that Y = YT, where Y, Y are the conformal position vector of

f, f» respectively.

From Theorem 2.2, it immediately follows that
g =(dY,dYy, = pXdf,dfn

is a conformal invariant, which is called the conformal metric of f.

Let{Ey,---, E,} be alocal orthonormal basis of M" with respect to g, with dual basis {wy, - - - , w,}.
Denote Y; = E;(Y) and define the following:
1 1
N = ——AY — —(AY, AY),Y,
n 2n?
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where A is the Laplace operator of g; then we have
(N,Y), =1, (N,N); =0, (N, Yi)» =0, (Y5, Y;)»=6;5, 1<, j,k<n.
We may decompose R’;“ such that
R;” = span{Y, N} ® span{Yy,--- ,Y,} @V,
where V_ Lspan{Y, N, Y1, --- ,Y,}. We call V the conformal normal bundle of f, which is a linear bundle.
Let & be a local section of V and (£,&), = —1. £ is called the conformal normal vector field of the

spacelike hypersurface. Therefore, {Y,N, Y}, - ,Y,, &} forms a moving frame in Rg” along M". We
write the structure equations as follows:

dy = Z wY;,
dN = ZA,Ja)jY + Z Ciwi,

ZA,]%Y wiN + Z wY; + Z Biwjé,
dé = an),n ZB,M ;

where w;j(= —wj;) are the connection 1-forms on M" with respect to {wy, -+ ,w,}. It is clear that
A= 3Aijwi®w;, B =3, Bjjw;®w,and C = }, Ciw; are globally defined conformal invariants.
We call A, B and C the conformal 2-tensor, the conformal second fundamental form and the conformal
1-form, respectively. The covariant derivatives of these tensors are defined by the following:

Z Ci,jwj = dC, + Z Ckwkj’
J k

ZAij,kwk =dA;; + Z Ajwyj + ZAkjwki’
k k k

Z Bi];ka)k = dB,‘j + Z Bikwkj + Z Bkjwk,-.
k k k

By exterior differentiation of the structure Eq (2.2), we can get the integrable conditions of the
structure equations

(2.2)

Aij = Ajia Bij = Bjia (2.3)
Aijx — Airj = BijCr — By Cj, (2.4)
Biji — Bir,j = 6;;Cr — 6iCj, (2.5)

lj jl Z(B kAk/ kAki), (26)
Riju = ByBjx — ByBjj + Ay + Ajibix — Ayd jx — A by 2.7)
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Furthermore, we have

1
tr(A) = %(l’lzk -1, R,’j = tr(A)6l-j +(n— Z)Aij + ; BikBkj’

(1-mCi= > By, > Bj= ”;1, > Bi=0,
J ij i

where « is the normalized scalar curvature of g. From (2.8), we see that when n > 3, all coefficients
in the structure equations are determined by the conformal metric g and the conformal second
fundamental form B, thus we get the congruent theorem of spacelike hypersurfaces.

(2.8)

Theorem 2.3. [2] Two spacelike hypersurfaces f, f : M" — R’l‘“(n > 3) are conformally equivalent
if and only if there exists a diffeomorphism ¢ : M" — M" which preserves the conformal metric g and
the conformal second fundamental form B.

The second covariant derivative of the conformal second fundamental form B;; is defined by the
following:

> Bijintn = dBijg+ Y Bujstomi + ) Binin + > Bijmni. 2.9)

Thus, we have the following Ricci identities

Bijx — Biji = Z B, jRpin + Z By Ry jia- (2.10)

Next, we give the relations between the conformal invariants and the isometric invariants of a
spacelike hypersurface in R]*'.

Assume that f : M" — R is an umbilic-free spacelike hypersurface. Let {e;, - ,e,} be an
orthonormal local basis with respect to the induced metric I = (df,df), with dual basis {0}, --- ,6,}.
Let e,,1 be a normal vector field of f, (e, 1,€,41)1 = —1. Let Il = Zij h;;0; ® 6; denote the second
fundamental form and H = % >.i hii denote the mean curvature. Therefore, the conformal metric g and
conformal normal vector field & have the following expressions:

n
g=e"l, & = — (P - nlHP),

&= —Hy+ (f,ens1)1, €ns1> {fs €ns1)1)-

(2.11)

By a direct calculation, we get the following expressions of the conformal invariants:

o 1
A,‘j =e 2 [T,'Tj - h[jH —Tij+ 5(—|VT|2 + |H|2)5,'j],

Bjj = e "(h;; — Hé;), (2.12)
Ci=e " (Hri— Hi= ) hijt)),

J

where 7; = ¢;(7) and [V7]* = ¥, 77, and 7;; is the Hessian of 7 for I and H; = e;(H).

Thus, {E; = e"ey,--- ,E, = e "e,} is an orthonormal local basis with respect to the conformal
metric g and {w = €70y, ,w, = e 6,} is the dual basis. Let {6;;|1 < i, j < n} denote the connection
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of the induced metric I = (df,df), with respect to the basis {6;,--- ,6,} and {w;;|l < i,j < n} the

connection of the conformal metric g with respect to the basis {wy, - - - , w,}, then we have the following:

wij = b + e(1)8; — e;(1);. (2.13)

Let {by,--- , b,} be the eigenvalues of the conformal second fundamental form B, which are called

the conformal principal curvatures of f. Let {4;,--- , 4,} be the principal curvatures of f. From (2.12),
we have

bi=e (4, -H), i=1,---,n. (2.14)

Clearly, the number of distinct conformal principal curvatures is the same as that of the principal
curvatures of f.

3. Examples of spacelike conformal Einstein hypersurfaces

In this section, we construct some examples of spacelike conformal Einstein hypersurfaces in a
Lorentzian space form M?*!(c). Using o, we obtain the hypersurface o' o oy o f : M" — R*!
in RY*! for the spacelike hypersurface f in another Lorentzian space form M7*!(c), furthermore, the
conformal invariants of the spacelike hypersurfaces in M!*!(c) are invariant under the diffeomorphisms
o (see Section 2 in [4]). Thus we can regard these spacelike hypersurfaces in M"*'(c) as in RI*!.

Example 3.1. For a constant a > 0, let x; : H*(-a) — R’f“ be the standard embedding and y : R"* —
Rk be the identity. We define the spacelike hypersurface as follows:

f=0pny)  Ha xR >R 1<k<n-1.

Leté = (éxl,_d) be a normal vector field of f. Thus,

-1
I =(dx,dx)1 = guray + rr+, I = —{dx,d&); = 7ng(_a),

where gy, denotes the standard metric on H¥(—a) and gg.+« the standard metric on R"*. Let
{e1,--- ,ex) be a local orthonormal basis on TH*(—a) and {ez.1, - ,e,} be a local orthonormal
basis on TR"*; then under the local orthonormal basis {e;,--- ,e,} on T(H*(—a) x R"*), (h i) =
diag(‘;l, cee _71, 0,---,0). From (2.12), we have that the conformal 1-form C = 0 and under the local
orthonormal basis,

(Blj):dlag(blv' ’blab25”' ’b2)9 (Aij):diag(ala”' , A1, Ao, 9a2)7
— ——
k n—k k n—k

b = (n—1Dn-k) b= _ (n— 1Dk _(n—=1D)(k-2n) _ (n—-1k
TN 2k T N2 YT T 220 T -k

From (2.8) and above data, the Ricci curvature R;; with respect to the conformal metric g are given
by the following:

where

_ (=11 -k

R11:"':Rkk_ (n_k)k R Rk+1k+1:"‘:Rnn:0'
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Thus, the spacelike hypersurface f : Hf(—a) x R"* — R"*! is a conformal Einstein hypersurface
if and only if k = 1, which is of constant conformal sectional curvature 6 = 0. In fact, the conformal
Einstein hypersurface is a cylinder over the curvature-spiral with a constant geodesic curvature.

Example 3.2. Let x; : S¥(1) = R and x, : H"*(~1) - R’l"k” be two standard embeddings. For a
constant a > 0, we define the spacelike hypersurface as follows:

f=(V1+ax,ax): SKV1 +a®) x H" ¥ (=a) - $™(1), 1<k<n-—1.
Let &€ = (ax;, V1 + a*x;) be a normal vector field of f. Thus,

I= (1 + az)gsk(l) + Clngn—k(_l), Il =—-aVN1+ az(ggk(l) + an—k(_l)).

Let {e;,---,e;} be a local orthonormal basis on TS*( V1 +a2) and {ei.;,--- ,e,} be a local
orthonormal basis on TH" *(—a); then under the local orthonormal basis {e;, -- ,e,}, (hij) =
diag( \/1_:‘7 e ,.\/;‘:7, = ';*“2,~-- , ‘—'L*“Z). From (2.12), we have that C = 0 and under the local
orthonormal basis,

(Bij) =diag(by, -+ ,b1,by, -+ , b)), (Aij) =diag(ay, -+ ,a1,az," "+ ,a),
~—— —
k n—k k n—k
where
1 -Dn-k -1 - Dk
p =L [ D=k 1 = Dk
n k n n—k
n—1 (n-k?+n’d n—1 k*-n*a*>-n?
a; = , Q) =
" k(n—k) 21 *Tkin-k) 22

By direct calculation using the Eq (2.8), the spacelike hypersurface f is not a conformal Einstein
hypersurface.

Example 3.3. Let x; : H'(-1) — R’l‘” and x, : H'*(-1) — R’f"‘“ be two standard embeddings. For
0 < a < 1, we define the spacelike hypersurface as follows:

f=(V1—-a2x;,axy) : H{(= V1 — @) x H"*(=a) » H'*'(-1), 1 <k<n-1.
Let £ = (—ax;, V1 — a’x,) be a normal vector field of f. Thus,

I = (1 - az)ng(_]) + angn—k(_l), II =da Vl — az(ng(_l) — an—k(_])).

Let {e;,---,e;} be a local orthonormal basis on THX(—a) and {eg.(,---,e,} be a local
orthonormal basis on TH"*(— V1 — a?); then under the local orthonormal basis {ej, - ,e,}, (h;;) =

diag(p=, ", =" L_”2,~- , _—'L‘“z). From (2.12), we have that C = 0 and under the local
orthonormal basis

(Bij) =diag(by, -+ ,by, b2, -+, by), (Aij) =diag(ay, -+ ,ay,as, -+ ,ay),
R e
k n—k k n—k
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where

_l [(n—1)(n—k) _—_1 /(n—l)k
bl_n k > b2 = n n—k’

n—1 (n-k?-n’d n—1 n*a*>-n*>+k*
a, = , ap =
YTk(n—k) 22 PTkn-k 2
By direct calculation using the Eq (2.8), the Ricci curvature with respect to the conformal metric g
is given by the following:

- - K — — _ 2
Ry= . =Ry = "= Dk-D (- D{ -ka”

2nk (n—k)k
m-D&K+k-nn-1) @©-Dn-k-1a’
R =---=R,, = +
otk 2nk(n — k) (n—k)k
Thus, the spacelike hypersurface f : H(= V1 — a?) x H" *(-a) — H’l’“(—l) is a conformal Einstein
hypersurface if and only if a = ”;Sl , L.e.,

=

Example 3.4. For 1 < p,q < nwith p+ q < n and a constant a > 1, we define the spacelike
hypersurface

) x H'H( - %) S H'(-1), 1<k<n-1.

n—

fiHY(=Va? - 1) x §P(a) x R* x R" P71 — R+
defined by
f(ul’ u/l’ t, uIN) — (tu/, tu”, ulll)’

where ' € HY(— Va®> = 1),u” € SP(a),u” € R"P=~,
Let b = Va? — 1. One of the normal vector to f can be taken as e,,; = (%u’, gu”, 0). The first and
second fundamental form of f are given by the following:

I =2{du',du'yy + du”’,du”y) + dt - dt + {du’”, du’"),

b
Il = —{dx,de, 1) = —t(;—)l(du',du’)l + —{du”,du’")).
a

. _ b2_ 2
Thus, the mean curvature of f satisfies H = 2—4= and ¢ = [¥;h, — nH’] =
pn=p)b*~2pga’b’ +g(n—g)a*

2 . .
DT := % . The conformal metric is as follows:

2
g =aXdu,du'y, + o {du”, du"y + %(dt -dt + {du””,du’")).

From (2.12), we have C = 0 and

(Bij) = diag(by,--- ,by,by,- -+ ,by, b3, ,b3),
q p n—-p-q

(Aij) =diag(ay,--- ,ai,az,"+ ,ar,a3,"+* ,a3),
q p n—-p—q

AIMS Mathematics Volume 8, Issue 10, 23247-23271.
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pb2—(n—q)a* by = qa’—(n-p)b? bs = pb2+qa’
) 2 — -

naba naba ’ naba

where by = and

(pb?* + ga*)* — (pb?* + ga*)2na® + n*a*b*
2n’a’b*a? ’

(pb* + ga*)* — (pb?* + ga*)2nb? + n*a*b* _(pb? + qa®)* — n*a’b?
2n%a’b*a? P B 2n%a’b*a?

By direct calculation, using the Eq (2.8), we can see that the spacelike hypersurface f is a conformal
Einstein hypersurface if and only if p = ¢ = 1 and n = 3, which is of a constant conformal sectional
curvature ¢ = 0.

A spacelike hypersurface with constant conformal principal curvatures and vanishing conformal 1-
form is called a conformal isoparametric hypersurface. By the main theorem in [4], Examples 3.1-3.4
are all spacelike conformal isoparametric hypersurfaces. Thus, we have following results.

l =

a, =

Proposition 3.1. Let f : M" — R'*' be a spacelike conformal isoparametric hypersurface. If f is
conformal Einstein, then f is locally conformally equivalent to one of the following examples:

1) the cylinder f : H'(—a) x R*' — R/*;
2) the spacelike hypersurface

k-1
n-—2

n—k-1
n-2

fHY - x H"*( - — H (-1, 1<k<n-1;
( ) H )

3) the spacelike hypersurface
f:H'(-Va® - 1)x S'(a) xR* - R%.

Particularly, the spacelike hypersurfaces in (1) and (2) have only two distinct principal curvatures.

Example 3.5. Let u : M?> — R? be a spacelike surface in R?. We define the cylinder f over the
spacelike surface u in R’l’“ by
f=@id): M* xR"? - R} xR = R,

where id : R"? — R"2 denotes the identity map.
Let 1 be the unit normal vector of u. Then, e,.; = (17,0) is the unit normal vector of f. The induced
metric / and the second fundamental form /7 of f are given by

I=1,+gpn—, Il =11, (3.1
where 1,, 11, are the induced metric and the second fundamental forms of u, respectively. Let 4;, 4,

be the principal curvatures of the spacelike surface u. The principal curvatures of the cylinder f are
obviously 4y, 4,,0,...,0. The conformal metric g of the cylinder f is

2
g = ——(P - nH)I = (4H2 - =K, | (L, + gar2), (32)
n—1 n—1
where H,, K, are the mean curvature and the Gauss curvature of u, respectively.

AIMS Mathematics Volume 8, Issue 10, 23247-23271.
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Example 3.6. Let u : M*> — S? C R* be a spacelike surface in Sf. We define the cone over the
spacelike surface u in R’}“ by the following:

fiM*XR" xR — R f(x,1,y) = (tu(x),y).

By direct calculation, the induced metric and the second fundamental forms of the cone f are,
respectively,
[ =21, + gpne, I =t11,,

where 1, 11,, Iz.— are understood as before. Let A;, 4, be the principal curvatures of the spacelike
surface u. The principal curvatures of the hypersurface f are %/l], %/12, 0,...,0. Thus, the conformal
metric g of the cone f is as follows:

1 2n
g=p = 3 [4H§ - — (K, - 1)] (1, + gpr2)
3.3
. (3.3)
= 4Hu - 1(Ku = DLy + gun2),

where H,, K, are the mean curvature and Gauss curvature of u, respectively. From (2.12), we know
that the conformal position vector of the cone f is as follows:

2n t2+(yy>+1 y t2+(yy)—1
Y = 4H2— Ku—l - s Uy ™y : .
[ “ n—l( )( 2t “ 1 2t )
Note that
1> , 1y Yy —1
ity) = (CFONHL Y L0 Ty g pur et g (3.4)

2t t 2t

is nothing but the identity map of H""!, since R* x R"~2 = H""! is the upper half-space endowed with
the standard hyperbolic metric.
The n-dimensional Lorentzian hyperbolic plane R}, C R/ is defined by

erl.;. = {(xl’ X, ,X,) € R?lxn > 0},

and endowed by the Lorentzian metric ds* = é(—dxl ®dx| +dx, ®dx, + - - -+dx,®dx,). The sectional

curvature of R, is —1 with respect to the Lorentzian metric ds*. For p = (x|, X1, ,X,) € RY,, let
X = (x1,X1," -, X,1), then p = (X, x,,). There exists a standard isometric mapping ¢ : R}, — Hj(-1)
defined by

RHE) +1 X 2+ (X)) - 1)

Plx1, - %) = B(E %) =

(3.5)

b b

2x, X, 2x,

Example 3.7. Let u = (x, x5, x3) : M*> — R? . be a spacelike surface in the 3-dimensional Lorentzian
hyperbolic plane R? .- We define the rotational hypersurface over the spacelike u in R’]"“ as follows:

fiM* xS R f(x, x2,x3,6) = (X1, X2, X36),

where 6 : S"~? — R""! is the standard sphere.
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Let 1 be the unit normal vector of the spacelike surface u given by n = (171,172, 13). Then, the unit
normal vector of the rotational hypersurface f in R}*! is as follows:

1
&= —(11,1m,136).
X3
By direct calculation, the induced metric and the second fundamental form of u are, respectively,

1
Iu = —2(—dx1 . dx1 + dXQ . de + d)C3 : d)C3),
X
3
By

1
11, = —(t.(du), 7.(dn)) = F(_dxl ~dnm +dxy - dn, + dxs - dns) — o

3

Thus, we can write out the induced metric and the second fundamental form of f,
I =531, + gsn2), 11 = x31l, — 31, — 113852

Let 1,1, be the principal curvatures of u. Then, the principal curvatures of the rotational
hypersurface f are

A omo b omsoom
X3 x%’ x5 x2 x%’“"xg'
Thus,
1 2
pr = —— (I - nH?) = = |4H2 - (K, + 1),
n-—1 x; n-—1

where H,, K, are the mean curvature and Gauss curvature of u, respectively. Therefore, the conformal
metric of the rotational hypersurface f is as follows:

2
g = Pl = [4H§ - nTnl(K,, + )| L+ gora). (3.6)

From Examples 3.5-3.7, the cylinder, the cone and the rotational hypersurface can be written by
i M>xXN"2(c) — R},
when f is a cylinder over a spacelike surface u(M?) ¢ R?, ¢ = 0 and N"%(c) = R"%; a cone
over a spacelike surface u(M?) ¢ S3, ¢ = —1 and N*?(c) = R* x R"3 = H"2; and a rotational
hypersurface over a spacelike surface u(M?) C R; , ¢ = 1 and N"(¢) = S$"7%. Let the induced metric,
the Gauss curvature, and the mean curvature of the spacelike surface u, be denoted by /,, K,, and

H,, respectively. From (3.2), (3.3) and (3.6), the conformal metric of the cylinder, the cone and the
rotational hypersurface f can be unified in a single formula:

2n
g =|4H> - — K+ 0| (L + grvrao) = > (L, + gnr2(c))s (3.7)

where gy 1s the Riemannian metric of an (n — 2)-dimensional space form of constant curvature c.
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Proposition 3.2. Ler f : M" — RP*'(n > 4) be the cylinder, or the cone, or the rotational
hypersurface over an umbilic-free spacelike surface u : M* — Mf(c), which was constructed as
Examples 3.5-3.7. Then, the spacelike hypersurface f is a spacelike conformal Einstein hypersurface

with the Ricci curvature A if and only if u is a spacelike (1, n)-surface in M 13 (o).

Proof. Now we take the local orthonormal basis {e;, e,} on TM? with respect to I,, consisting of
principal vectors. Let {es,...,e,} be a local orthonormal basis on TN""%(c), then, {e;, e, e3,...,e,}
is a orthonormal basis on T'(M?* x N"~*(c)) with respect to the product metric 1, + Iyi-2().

Let R; ju denote the curvature tensor with respect to 1, + Iy, and R;j; denote the curvature tensor

with respect to the conformal metric g. Let u = 1 = —————, then by direct computation (also

¢ 4HZ - 28 (K, +c)
see [6]), we have the following:
Rijij = 1 Rijij + ppis + pupaj; — |Vl i # Ji, (3.8)
Riji = R ik + ppajus i # J, j# k, k #1,

where y;; and Vu are the Hessian matrix and the gradient of u with respect to the metric 1, + Iyn-2().
Since the metric 1, + Iy»2( is a Riemannian product metric, thus

pi =0, pi; =0, Riji; = Rop; =0, 1, > 3.
Thus, we have
Vul? = ui + 13 = \Vul®, Mg = gy + pm = A,

where A,u and V,u are the Hessian matrix and the gradient of u with respect to the metric /,,.
Now, we assume that the Ricci curvature with respect to the conformal metric g is A, then from the
first equation of (3.8),

A= Zlelk =1’ Zklklk + (n = Dupyy + Zﬂ#kk —(n— D)Vl

k#1 k#1 k#1
= WK, + pAp + (n = 2y — (n = DIVl

Similarly, we have

A= (n = 3)c + phu — (n = DIVl
A= 12K, + pAp+ (n = 2upyy — (n — 1)[Vul, (3.9)
A= 1* K, + pAp+ (n = )y — (n— 1)Vl

From above equations, we have

/112:0,
Ay = 2 e —K,] = 2uy; =2
,u—n_z[(n— e — K] =2p11 = 2, (3.10)
2 —3)c - 2K,] A
VZ: 2+ 2:/“1[’/1(” ul — .
VR =it = =002 ao1
Thus,
(n —3)cu — pkK,

Hess,(1)(e;, e)) = L(eie)), ei,e;€ TM,

-2
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where Hess, is the Hessian matrix with respect to the metric /,. By the Definition 1.1, we know that u
is a spacelike (4, n)-surface in M f(c).

Let u be a spacelike (4, n)-surface in Mf(c). We note that the conformal metric of f is given
by (3.7), by direct calculation we know that f is a spacelike conformal Einstein hypersurface with
Ricci curvature A. Thus, we finish the proof. O

4. The proof of the main Theorem 1.2

Let f : M" — RI"'(n > 4) be a spacelike conformal Einstein hypersurface without umbilical
points. Since three dimensional Einstein manifolds are of constant sectional curvature, in this section,
we assume n > 4. Because of the local nature of our results, we can assume that the multiplicities of
all principal curvatures are locally constant. In fact, there always exists an open dense subset U of M"
on which the multiplicities of the principal curvatures are locally constant.

We assume that the spacelike Einstein hypersurface has (s + ¢) distinct principal curvatures. Since
the multiplicities of all principal curvatures are locally constant, we can choose a local orthonormal
basis {E1, ..., E,} with respect to the conformal metric g such that

(Blj) = diag{blabQ’ et abn} = diag{l_)lal_)29~ . ,l;s’l_)s+l’ .. "bs+1’ .. "bs+t$ .o abs+t}'

Here, the conformal principal curvatures by, ...,b, are simple, the multiplicities of the conformal
principal curvatures by,1,...,b,,, are greater than one. Under this local orthonormal basis, let the
index set
[i] = {m|b,, = b;}.
As the spacelike hypersurface is a conformal Einstein, from (2.8), we have the following:
Rij = A8;; = Y ByBy; + tr(A)d; + (n — 2)A. 4.1)
k
Thus, under the basis {E, ..., E,}, we have
1
(Ay) = diaglay, ... an), a; = —> (4~ b? —tr(A)), 1 <i<n. 4.2)
n —

Since f is a spacelike Einstein hypersurface, A and tr(A) are constant.
By the covariant derivative for the Eq (4.1), we get that

Aijk = %(Z B Bnj + Z BinBoji)-

Thus, under the basis {E;, ..., E,}, we have

—(bi + bj)Bjjx = (n — 2)A; . 4.3)
Lemma 4.1. Under the basis {E, ..., E,}, the conformal invariants of f have the following relations:
(1) Ci=0;i>s,
Q) Bijx=0,i# jj#kk+i B;;=0,i+ ji,je€lil,
(3) Bjji = benf_bjl)bjch Bijj = %Ci, [i] # [J1, (4.4)
Bi;; 3 nb;C; nb;C;

Biji
(4) wij = —w; +

PR wi, 1] # L.

bi=b; T =B = by
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Pl"OOf. USiI’lg dBij + Zk Bkja)k,- + Zk B,-ka)kj = Zk Bij,kcuk, let [l] = []],l * j, SO bi = bj, we get
Bijx =0, [il=[jl.i# ) 1 <k<n (4.5)
Particularly, B;;; = 0. Using (2.4) and (2.5),

Aijj = Ajji = =bjCi, Bijj = Bjji = =Ci,

from (4.3), we obtain
n
n—2
If b; # 0, then C; = 0. If b; = 0, then E;(b;) = Bj;; = 0. Combining B;;; = 0, thus C; = 0.
Therefore,

bjC,‘ = 0,

Ci:O,i>S,

which proves the Eq (1) in Lemma 4.1.
Ifi # j,j # k,i # k, then B;j; = By j, Aijx = Aij. Moreover, if b; # b; or b; # by, using (4.3) we
obtain the following:
Bijy=Aijx=0,i# j,j# k,i#k. (4.6)

If b; = b;, combining (4.5) and (4.6), we obtain the following:
Bijy=0,i,j>s i# jil<k<n

Thus, we obtain the Eq (2) in Lemma 4.1.
If [i] # [j], using (2.4), (2.5) and (4.3), we obtain that

bi+bj 2bj b,“i‘bj 2bj
~bjCi = Aijj = Ajji = = —5Bijj + -5 Bjji = = —= Bijj + = (Bij; + C),
and b+ ( b
i+ (- 1)b; :
Bjji = —————Ci Bijj = —7Ci, bi# b,
i J L J

Thus, we obtain the Eq (3) in Lemma 4.1.
Using dB;j + Y Brjwyi + 2k Bawij = 2 Bijawi, we have

(bi = bjw;j = Z Bijjwy.
%

Since b; # b;, we have

Bij,i Bij,j nbjCi l’lbiCj
ij = it | = i~ is
O b=, hi—b, T b= b2 = bR
that completes proof of the Lemma 4.1. O

Proposition 4.1. Let f : M" — R (n > 4) be a spacelike conformal Einstein hypersurface without
an umbilical point. If the conformal 1-form C = 0, then f is locally conformally equivalent to one of
the following examples:

AIMS Mathematics Volume 8, Issue 10, 23247-23271.



23262

1) the cylinder f : H'(-a) x R*™! — R"*!; and
2) the spacelike hypersurface

fH(- i:;)xH”"‘(— %)-ﬂﬁ%-l), l<k<n-1.

Particularly, f has only two distinct principal curvatures.

Proof. Since C = 0, from Lemma 4.1, we know that B;;; = 0, i # j. Since tr(B) = 0, we have
2m Bumi = 0 and B;;; = 0. Thus B;j; = 0. Therefore, the conformal second fundamental form of f
is parallel. Particularly, the conformal principal curvatures are constant; thus, the spacelike conformal
Einstein hypersurfaces are conformal isoparametric hypersurfaces. By Proposition 3.1, we finish the

proof.

O

Theorem 4.1. Let f : M" — RI*! (n > 4) be a spacelike conformal Einstein hypersurface without

umbilical points; then, f has three distinct principal curvatures at most.

Proof. We assume that s + t > 4. Next, we prove that there exists a contradiction.
Now we fix the indices i, j, k such that [i] # [j], [j] # [k], [k] # [i], then

Bijx =0,i € [il,j € [j].k € [k].
Noting Ei(b;) = Biix, and using definition of C; ; and Lemma 4.1, we can obtain the following:

Bij i = Ex(Bij;) + By jwii(Er)

bk+(l/l—1)bj C.C nbj C
= i + ike
YGi—bpbi—by T bi—b;
Similarly, we have
flzbj

Bits = Gy — by
From Ricci identity B;j x — Bjjxj = (b; — bj)R ;i = 0, thus we obtain
CiCr+b;Ci =0.
Since s + ¢ > 4, there is [[] such that [[] # [i], [j], [k]. Similarly, we have
CiCr+bCiy =0.
From (4.8) and (4.7), we can get
bj—=b)Cix =0, CiC,=0.
This implies that there are at least n — 1 zero elements in {Cy, ..., C,}, and we assume that
C,=...=C,=0.
If the multiplicity of b, is greater than one, then from Lemma 4.1, we have C; = 0 and

Bijx=0,1 <14, jk<n,

4.7)

(4.8)
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thus B is parallel. From Proposition 4.1, we know that M" has two distinct principal curvatures. This
is a contradiction.

Now, we assume that the multiplicity of b; is one. Since s +t > 4, we take i, j,k > 1. Noting
(1] # [j]1, [J] # [k], [k] # [i], so we have the following:

Ci=C;j=C=0,w;;=0, wg =0, wyr =0,

nb,Cl l’lbjCl I’lbkC1
W= T——=W;, W, = ———=Wj, W=7
R e I R T
Using dw;j — Y wiy N wyj = —% 2.u Rijiuwi A wy, we obtain the following:
Ry = —bib “bb
ijij = —bivjta;+a; = )
M / 77 (b = b)A(by —b)> !
b 4.9)
Rii:—bib'i' i+ = _ ik C2,
T T T G =Py — b !
where i € [i], j € [j], k € [k].
Subtracting the second formula of (4.9) from the first one, we obtained
n*b;C3(b; — b)(b by — b?)
biby — b)) + (a; — a;) = it ! . 4.10
= D) = ) = Gy = Py — by (10
b2-b?
From (4.1), we have ¢ — a; = . Combining it with (4.10), we obtain
(l’l - 2)b, + bj + bk _ l’lzblC%(b% - bjbk) (4 11)
n-2 (b1 = b)*(b1 — b)A(by — b)) '
Similarly,
(n— 2)bj + b; + by _ nzbJC%(b% - b,’bk) (4.12)
n-2 (by - bj)z(bl — b)*(by - bi)z. .
Using (4.11) and (4.12), we have
n*C2p? _n-3 “413)
(b - bj)z(b] —b)*bi - b)) n- 2 .
If s + ¢ > 5, then there exists another conformal principal curvature b; and
20212 _3
il =2 (4.14)

(b1 = b)*(by = b)*(by —b)*  n-2

Combining the Eqgs (4.13) and (4.14), we can get that b, = by, which is a contradiction. Thus,
-3
s+1=4, PhC? == S (b1 = b)Y (b1 ~ b (b = b,
n —
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This and (4.9) yield the following equations:

—bl‘bj +a; + aj; _ —(I’l - 3)b,b]

(by—b)* (n-2)p
—b,‘b +a;+a —I’l—3bib
(i 0 (4.15)
(b1 — b)) (n—2)b;
—bjbk + aj; + ag _ —(l’l - 3)b]bk
(b = b2 (-2
Combining (2.8) and (4.1), it is easy to prove that the conformal principal curvatures {by, b;, b}, b}
are constant. Thus B;;; = Bj;; = By, = 0 and C; = 0. Therefore, the conformal 1-form C = 0 and
from Proposition 4.1 we know that s + ¢ = 2, which is a contradiction. Thus, we complete proof of the
Theorem 4.1. O

Since s + t < 3, we consider two cases:
Casel. s+1=2;
Case2. s +1r=3.
First, we consider Case 1, s + r = 2, we have the following results.

Theorem 4.2. Let f : M" — R™!' (n > 4) be a spacelike conformal Einstein hypersurface with

two distinct principal curvatures, then f is locally conformally equivalent to one of the following
hypersurfaces:

1) the spacelike hypersurfaces with constant conformal sectional curvature;
2) the spacelike hypersurface

£ - %)an—k(_

n—k-1

> yeHT%4L1<k<n—L
n_

Proof. We assume that the spacelike conformal Einstein hypersurface has two distinct conformal
principal curvatures by, b,. If the multiplicities of the conformal principal curvatures b, b, are greater
than 1, then the conformal 1-form C = 0. By Proposition 4.1, we finish the proof.

If one of conformal principal curvatures by, b, is simple, then the spacelike hypersurface is
conformally flat. Since the spacelike hypersurface is conformal Einstein, then the spacelike conformal
Einstein hypersurface is of constant conformal sectional curvature. Thus we finish the proof. O

Next, we consider Case 2, s + t = 3, that is, the spacelike conformal Einstein hypersurface
has three distinct conformal principal curvatures by, b,,bs;. If the multiplicities of the conformal
principal curvatures by, b,, b5 are greater than 1, then the conformal 1-form C = 0 by Lemma 4.1.
By Proposition 4.1, we know that such a hypersurface does not exist. Thus, we need to consider the
following two subcases, (1) {by,...,b,} = {b1,uy..., 10, v,..., v}, 2) {b1,...,b,} = {b1,bo,p,...,u}.
The following proposition means that the subcase (1) cannot occur.

Proposition 4.2. Let [ : M" — R’l’“(n > 4) be a spacelike hypersurface. If f has three distinct
principal curvatures and one of the principal curvatures is simple, i.e.,
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{br,....b,} ={bi,uty.... 00, v,.... v}, 1 +s+t=n,s1>2.
———
K 1

Then, the conformal Ricci curvature of f can not be constant.

Proof. Leti € {m|b,, = u}, j € {m|b,, = v}, from Lemma 4.1, we have

C=...=C, =0,
nu nv
B ii = C ,B ii = C ’
T —p DT T =y (4.16)
By, B,
w i = a)“ w = b
: b] - b b] -V /
Since Bj;; = By;; + Cy, from (4.16), we obtain
bi+(n-1 bi+(n-1
Bii = ucl’ Bj; = MQ. (4.17)
b] iy b] -V

Since tr(B) = 0, Vg, tr(B) = tr(Vg,B) = 0 (i.e., X, Bum1 = 0). Combining it with b; + sy + tv = 0 and
b} + sp* + n* = "1, yields the following:

p? — L
Bii = —sBi) — By = ——__1__¢ (4.18)
11,1 ii,1 il (bl _,U)(bl _ V) 1- .
USiIlg da)ij - Zl wir N\ wij = —% Zkl Rl‘j]da)k N w;, We obtain
—n*uvC?
Rii: = 1 ] 4.19)
(b = Wby —v)?
Using the definition of B;jy; and Lemma 4.1, we have
b1Biiy — uBi, ny nuC,
By = W”Q + b, _HCI,I,Bli,li = (By1,1 — Biiy — Bli,i)m,
b\Bjj1 — vBi1,1 ny nvC,
B,gj=————nCi+—Ci1,B1;1i=By11—-Biij1 — B1jj)——.
11 by "Gt G Bl (Bi1,1 — Bjji 11,1)(]91 )
Using Ricci identity By;;; — By = (u — b1)Ry;1; and Lemma 4.1, we obtain the following:
nC
(b —,U)ZRUU = b _1 [2uBy1, — (b1 + w)Bjj; — uBy;;] — nuC
LK (4.20)

nC
(b _V)2R1j1j = b 1

V[2V311,1 —(by +Vv)Bjj1 —vBy;;]l —nvCy,
L=

From (4.20), (4.16) and (4.18), we can obtain the following:
n(u —v)C3
(b1 — 2y — 2"
X = D[P + v+ b7 = 2b1(u + v) — 4(n — Duv] + Bn = 2)byuv(u + v)
+(2n® = 2n + DV

(b1 — )*VRyi1; — (b1 = V)R j1; =
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Combining it with (4.19), we have
-V
(b1 = 0P vRin = (by = VR + iRy = 0. (4.21)

Using (4.2), (4.21) and by + s + tv = 0,07 + su® + tv* = =L we know that by, u, and v are constant.
From Lemma 4.1, we get C; = 0. Therefore, C = 0. Using Proposition 4.1, we know that f has only
two distinct principal curvatures, which is a contradiction, finishing the proof. O

Nextlet f : M" — R’f“(n > 4) be a spacelike conformal Einstein hypersurface with three distinct
principal curvatures, two of then being simple, i.e.,

{b1,....b,} =1{b1,bo, 1, ..., 1u}.

Using (4.2), we have
(Aij) = diaglay, ...,a,} ={a,a2,a,...,a}.

In the following section, we assume the index 3 < «, 3,y < n. From Lemma 4.1, we have

nb 1 _ l’lb2 (422)

By By By Biss w
_Dlii _D2ii ..
by - b,

Thus, we can deduce the following results,
Ey(by) = Eo(by) = E,(n) =0, Eo(Cy) = E,(Cy) =0. (4.23)
Using dwiq = 2 Wim A W = =3 Xy Riauwr A wp and (4.22), we get

Bla,a Bla,a 2 Bl2,1 BZ(I,(I
)+ ( ) -

by —u by —u by —byby —pu

Bla,a _ BZa,a BIZ,Z _ Bla,a BZar,a

by—u’ by—uby—by by —puby—pu

El(

= —Rig1a = bl# —da; — dg,
4.24)
Ex(

Similarly, from da)za - Zm W N\ Wiy = —% Zkl Rzakla)k A Wy
BZa/,(t _ Bloz,oz BIZ,I . Bla,a BZQ,Q
by — by —uby — by bl_ﬂbl_ﬂ’

E\(
(4.25)

Booa )+ ( Bya 2 Bna Biea
by — by — by —byby —pu

Under the orthonormal basis {Ey,--- , E,}. {Y,N,Yy,---,Y,, &} forms a moving frame in Rg” along
M". We define

Ex( = —Rop2e = bopt — ap — ay.

B
F:é:_:u’ Xl:_b

B a,a
P=aY - N+uF - —2%x, - 222 x, (4.26)

B]a,a
by —pu by —u

K =2a—-1*+(
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Since the conformal principal curvatures b; and b; are simple; thus, the principal vector fields E;
and E, are well defined. Since the vectors Y, N, Y1, Y,, & are well defined alone the hypersurface, thus
the vectors F, X1, X, P, K are also well defined. It is easy to get that

<F$F>2 = _1’ <X]7X1>2 = <X2’X2>2 = 1’ <P’P>2 = _K-
(F,X1)2 =(F,Xa), = (F, P); = (X1, X2), = (X1, P); =Xz, P); = 0.
By direct calculation, from (2.2), (4.23), (4.24) and (4.25), we have the following equations:

E\(F) = (by — )Xy, Ex(F) = (by = X3, E(F) =0,
BlZ,]

B20zoz
EX)=P+ — + X, + (by — WF,
1(X1) Go—p o op)etr-n (4.27)
Bz Bioa
E,X)) = — + —)X», E(X;) =0.
2(X1) (bl—bz b1—/1) 2 (X1)
B121 BZaa
E\(Xp) =- — + —)X1,
1(X2) (bl—bz bz—,u) 1
E B Bisa Bi2» B
2(Xp) = P+ ( - )X1 + (by — WF, Eu(X2) =0, (4.28)
bi—u bi—Db
Blaa BZaa
E\(P) =- —P + KX, E;(P) = — —P+ KX,, E,(P)=0.
by —p by —
We define
Blafaf BZ(I(I
T=aY+ N —ué+ —Y, + — Y.
by —p by — p
Then,
T+P=KY,(P,Py,=-K (T, T), =K. (4.29)
By direct calculation, from (2.2), (4.23)—(4.25), we have the following equations:
Blaa BZaa
El(T) = - : T’ EZ(T) = - - T’ E(I(T) = KY(IH
by —pu by —u
Ei(Yo) = ) 0n(ENYy, Ex(Ya) = ) wiy(Ex)Y,, 430)
y y

Eo(Yo) = =T + ) wn(E)Yy, Eg(Ye) = ) wa(Ep)Y,, a #p.
Y Y

From (4.27) and (4.28), we know that the subspace V|, = span{F, X, X, P} is fixed along M".
From (4.30), we know that the subspace V, = span{T, Y3, - ,Y,} is fixed along M". Since T L Vj,
thus

Vi 1L V,.

From the fourth equation in (4.22), we know that the distributions
Dy = S pan{E,, E>}, D, = S panlEs, --- , E,}

AIMS Mathematics Volume 8, Issue 10, 23247-23271.



23268

are integrable. Let M? be an integral submanifold of Dy, by (4.27) and (4.28) the vector F induces a
2-dimensional submanifold in H’}*z
F:M - H’lﬁz.

By direct calculation, from (2.2), (4.23)—(4.25), we have

Bla a BZa 1]
E((K) = —2b —K, E>(K) = —2b —K, E,(K)=0. (4.31)

Regarding (4.31) as a linear first order ODE for K, we know that K = 0 or K # 0 on the connected
hypersurface M". Thus, we need to consider the following subcases: (1) K = 0 on M"*; (2) K < 0 on
M"; (3) K > 0 on M". Next, we treat them case by case.

Proposition 4.3. Let f: M" — R’l’“(n > 4) be a spacelike conformal Einstein hypersurface with three
distinct principal curvatures. If K = 0, then f is locally conformally equivalent to a cylinder over a
spacelike (A, n)-surface in R3, (n > 4).

Proof. Since K = 0, then (P, P), = 0, from (4.28) we have

Bla,a BZa,af
E\(P) = P, E5(P) = P.
u—b pu—by

Therefore, P has a fixed direction, and we can write, up to a conformal transformation
P=y(,-1,0,---,0) = e, y € CZ(M"),
S pan{F, X, X,, P}
= Span{e’(()’()’ 1,09" : ’O),(O’O,(), 1305"' 30)9(0,0’0,0, 1’0,"' ’0)}

Let the spacelike hypersurface f : M" — R”*! have the principal curvatures
A, A, A, A

From (P, F), = (e, F), = 0, we get
A1=0.

Similarly, from (e, X1), = (e, X»)>» = (e, Y,)> = 0, we get that

Bla,a BZ(x,a
p+Eip) =0, —=p + Exlp) = 0, Eq(p) = 0.

M= b H— D2
Thus, we have
Bl(l,(l BZa/,a/
E\(logp) = ——, Es(logp) = » Eo(p) = 0. (4.32)
by —p by —

Let{e; = pE;, 1 <i < n}, then{ey,--- ,e,}is a orthonormal basis of 7 M" with respect to the induced
metric of f, {6, - ,0,} its dual basis and {6;;} connection form with respect to basis {6y, - - ,6,}. Then,
from (2.13), we obtain

61, =0, 6, =0. (4.33)

Therefore, the spacelike hypersurface f : M" — R'*! is conformally equivalent to the cylinder
hypersurface given by Example (3.5). By Proposition 3.2, we finish the proof. O
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Proposition 4.4. Let f : M" — R'"'(n > 4) be a spacelike conformal Einstein hypersurface with
three distinct principal curvatures. If K < 0, then f is locally conformally equivalent to a cone over a
spacelike (A, n)-surface in the Lorentzian space form S-;’(l), (n>4).

Proof. Since K < 0, by (4.29) the vector field P is a spacelike vector field in Rg”. Thus, up to a
conformal transformation we can write the following:

Vl = Span{F’XIaXZ, P}
= span{(0, 1,0, ...,0), (0,0,1,0,...,0), (0,0,0,1,...,0), (0,0,0,0,1,0,...,0)}.

Since the spacelike hypersurface f has principal curvatures
{4, A, A,-+-, 4,
and e = (1,0,...,0, 1)LV}, we have (F, e), = 0 which implies that
A=0.

Let
P T

b 0 = b
V-K V-K
then (P, P), = 1,(6,6), = —1. Eqs (4.27) and (4.28) mean that

P=

P:M*— S cRl =V,
is a spacelike surface, and the Eq (4.30) mean that
6:L— H?cR!

is a standard embedding and the sectional curvature of §(L) is —1. Since dimL = dimH"™% = n — 2, we
know that § : L — H"? is a standard isometric isomorphism. By (3.4), we have the standard isometric
isomorphism

6:L—H"?=R"xR".

Since P+ T = KY,

| .
Y = —(P’e):Mn:MZXL_’S?XHn_2=S?XR+XR”‘3CR'I‘”'

VR

Therefore, g = (dY,dY), = ‘?1([ + Ig-1). Thus, the spacelike hypersurface f is conformally
equivalent to the cone hypersurface given by Example 3.6. By Proposition 3.2, we finish the proof. O

three distinct principal curvatures. If K > 0, then f is locally conformally equivalent to a rotational
hypersurface over a spacelike (A, n)-surface in the Lorentzian space form R; .

Proposition 4.5. Let f : M" — R'"!'(n > 4) be a spacelike conformal Einstein hypersurface with
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Proof. Since K > 0, then (P, P), < 0. Thus, up to a conformal transformation, we can write the
following:

Vi = span{F, X,, X,, P}

= span{(1,0,---,0), (0,1,0,---,0), (0,---,0,1,0), (O0,---,0, 1)}.

Thus, e = (1,0,...,0,1) € V; and (Y,,e), = 0, 2 < @ < n, which imply that E,(7) =0, 2 < @ < n.

Setting

_ P T
P=—, 6=—

VK VK’
then (P, P), = —1,(6,6), = 1. Egs (4.27) and (4.28) mean that
P: M - H, cR} =V,
is a spacelike surface. Eq (4.30) means that
6:L— S cR"!

is a standard embedding and the sectional curvature of #(L) is 1. Since dimL =n—2,60 : L — S"?isa
standard isometric isomorphism. Since P + T = KY,

1
VK

Y=—(P,0): M*xX L — Hj xS" 2.

Denote P = (uy, u, u3, us) € H3, then

Uy — Uy u ur us Uy 0

b b b 9 .
VK U1 —Us Uy —Us U —Us U — Us U — Uy

Y =

Thus the spacelike hypersurface f : M? x "% — R"*! is now given by

ur us 0

f=(

Uy —Ug Uy — Uy Uy — Uy

Note that
up us 1

@(uy, uy, uz, ug) = ( ) ,
Uy —Ug U — U4 U] — Uy

is the inverse mapping of the local isometric correspondence ¢ : Ri L o I[-]I? by (3.5). Thus,
the spacelike hypersurface f is conformally equivalent to the rotational hypersurface given by
Example 3.7. By Proposition 3.2, we finish the proof. O

Combining Propositions 4.3—4.5, we have the following theorem:

Theorem 4.3. Let f : M" — R’]’“(n > 4) be a spacelike conformal Einstein hypersurface with

three distinct principal curvatures. Then, f is locally conformally equivalent to one of the following
examples:

1) a cylinder over a (4, n)-surface in R?;
2) a cone over a (1, n)-surface in S3;
3) a rotation hypersurface over a (4, n)-surface in Rf e
Combining Theorems 4.1 and 4.3, we finish the proof of the main Theorem 1.2.
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