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Abstract: Let f : Mn → Rn+1
1 be an n-dimensional umbilic-free spacelike hypersurface in the (n+ 1)-

dimensional Lorentzian space Rn+1
1 with an induced metric I. Let II be the second fundamental form

and H the mean curvature of f . One can define the conformal metric g = n
n−1 (∥II∥2 − nH2)I on

f (Mn), which is invariant under the conformal transformation group of Rn+1
1 . If the Ricci curvature of

g is constant, then the spacelike hypersurface f is called a conformal Einstein hypersurface. In this
paper, we completely classify the n-dimensional spacelike conformal Einstein hypersurfaces up to a
conformal transformation of Rn+1

1 .
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1. Introduction

Let Rn+2
s be the real vector space Rn+2 with the Lorentzian product ⟨, ⟩s given by the following:

⟨X,Y⟩s = −
s∑

i=1

xiyi +

n+2∑
j=s+1

x jy j.

Let Rn+2 denote the (n+ 2)-dimensional Euclidean space and a dot · represent its inner product. For
any a > 0, the standard sphere Sn+1(a), the hyperbolic space Hn+1(−a), the de sitter space Sn+1

1 (a) and
the anti-de sitter space Hn+1

1 (−a) are defined by the following:

Sn+1(a) = {x ∈ Rn+2|x · x = a2}, Hn+1(−a) = {x ∈ Rn+2
1 |⟨x, x⟩1 = −a2},

Sn+1
1 (a) = {x ∈ Rn+2

1 |⟨x, x⟩1 = a2}, Hn+1
1 (−a) = {x ∈ Rn+2

2 |⟨x, x⟩2 = −a2}.
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Let Mn+1
1 (c) be the Lorentz space form with constant sectional curvature c with respect to its

standard Lorentzian metric. When c = 0, Mn+1
1 (c) = Rn+1

1 . When c = 1, Mn+1
1 (c) = Sn+1

1 (1). When
c = −1, Mn+1

1 (c) = Hn+1
1 (−1).

A diffeomorphism Φ : Mn+1
1 (c) → Mn+1

1 (c) is called a conformal transformation, if Φ∗h = e2τh
for some smooth function τ on Mn+1

1 (c), where h denotes the standard Lorentzian metric of Mn+1
1 (c).

All conformal transformations form a transformation group, which is called the conformal group of
Mn+1

1 (c). In [2], X. Ji et al. studied the conformal geometry of spacelike hypersurfaces in the Lorentz
space form Mn+1

1 (c). They defined the conformal metric g and the conformal second fundamental
form B on a spacelike hypersurface, which determined the spacelike hypersurface up to a conformal
transformation of Mn+1

1 (c). Since the conformal geometry of spacelike hypersurfaces in Lorentzian
space forms Mn+1

1 (c) is uniform by the conformal map (2.1), in this paper, we only consider the
conformal geometry of spacelike hypersurfaces in the Lorentzian space Rn+1

1 .
Let f : Mn → Rn+1

1 be an n-dimensional umbilic-free spacelike hypersurface in Rn+1
1 , and let

I = ⟨d f , d f ⟩1 be the induced metric, II be the second fundamental form and H be the mean curvature.
The conformal metric g and the conformal second fundamental form B of the hypersurface are defined
by, respectively,

g = ρ2⟨d f , d f ⟩1 =
n

n − 1
(∥II∥2 − nH2)I, B = ρ

∑
i j

(II − HI), (1.1)

which form a complete conformal invariant of the spacelike hypersurface when the dimension of the
spacelike hypersurface n ≥ 3 (see Section 2). In the conformal geometry of spacelike hypersufaces, a
notable class of spacelike hypersurfaces are those with constant conformal sectional curvature (i.e.,
constant sectional curvature with respect to the conformal metric g). In [2], the authors have
classified the spacelike hypersurfaces with constant conformal sectional curvature up to a conformal
transformation of Rn+1

1 .

Theorem 1.1. Let f : Mn → Rn+1
1 , (n ≥ 3), be an umbilic-free spacelike hypersurface with constant

conformal sectional curvature δ in Rn+1
1 . Then, f is locally conformally equivalent to one of the

following hypersurfaces:

1) a cylinder over a curvature-spiral in a Lorentzian 2-plane R2
1 (where δ ≤ 0);

2) a cone over a curvature-spiral in a de sitter 2-sphere S2
1 ⊂ R

3
1 (where δ < 0);

3) a rotational hypersurface over a curvature-spiral in a Lorentzian hyperbolic 2-plane R2
1+ ⊂ R

2
1 (the

constant curvature δ could be positive, negative or zero); and
4) a cone over the hyperbolic torus H1(−

√
a2 − 1) × S1(a), a > 1 (where δ = 0).

The curvature-spiral γ(s) in a 2-dimensional Lorentzian space form M2
1(c) is determined by the

following intrinsic equation: [
d
ds

1
κ

]2

+ c
[
1
κ

]2

= −δ, (1.2)

where s is the arc-length parameter, and κ denotes the geodesic curvature of the spacelike curve γ, and
δ is a real constant. The definition of the Lorentzian hyperbolic n-plane Rn

1+ ⊂ R
n
1 is given in Section 3.

Another notable class of spacelike hypersurfaces are those with a constant conformal Ricci
curvature (i.e., constant Ricci curvature with respect to the conformal metric g), which is called
a conformal Einstein hypersurface. Clearly, the spacelike hypersurface with a constant conformal
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sectional curvature is a conformal Einstein hypersurface, but the converse may not be true when the
dimension of the spacelike hypersurface n ≥ 4. In this paper, our goal is to classify these conformal
Einstein hypersurfaces of dimension n ≥ 4. We note that some of such examples come from cones,
cylinders, or rotational hypersurfaces over the spacelike (λ, n)-surfaces in the 3-dimensional Lorentzian
space forms S3

1(1),R3
1,R

3
1+, respectively, so we first give the definition of the spacelike (λ, n)-surface as

follows.

Definition 1.1. Let u : M2 → M3
1(c) be an umbilic-free spacelike surface in M3

1(c), and let Iu,Hu,Ku

be the induced metric, the mean curvature, the Gauss curvature of u, respectively. Let Hess be the
Hessian operator with respect to Iu and ∇ the gradient with respect to Iu. For a positive integer n ≥ 4,
let

Λ =
1√

4H2
u −

2n
n−1 (Ku + c)

.

The surface u is called an (λ, n)-surface for some λ=constant, if the Hessian matrix and the gradient
of the function Λ satisfy the following equations:

Hess(Λ) =
(n − 3)cΛ − KuΛ

n − 2
Iu, |∇Λ|

2 =
Λ2[n(n − 3)c − 2Ku]

(n − 1)(n − 2)
−

λ

n − 1
.

Our main result is given as follows.

Theorem 1.2. Let f : Mn → Rn+1
1 (n ≥ 3) be a spacelike conformal Einstein hypersurface without

umbilical points in Rn+1
1 . Then, f is locally conformally equivalent to one of the following spacelike

hypersurfaces:

1) spacelike hypersurfaces with constant conformal sectional curvature;
2) the spacelike hypersurface

f : Hk
(
−

√
k − 1
n − 2

)
× Hn−k

(
−

√
n − k − 1

n − 2

)
→ Hn+1

1 (−1), 1 < k < n − 1;

3) a cylinder over a spacelike (λ, n)-surface in R3
1, (n ≥ 4);

4) a cone over a spacelike (λ, n)-surface in S3
1(1), (n ≥ 4); and

5) a rotational hypersurface over a spacelike (λ, n)-surface in R3
+, (n ≥ 4).

The rest of this paper is organized as follows. In Section 2, we study the conformal geometry of
spacelike hypersurfaces in Rn+1

1 . In Section 3, we construct some examples of the spacelike conformal
Einstein hypersurfaces. In Section 4, we give the proof of the classification Theorem 1.2.

2. Conformal geometry of spacelike hypersurfaces

In this section, we recall some conformal invariants of a spacelike hypersurface and give a congruent
theorem of the spacelike hypersurfaces under the conformal transformation group of Rn+1

1 . For details
readers refer to [2–4].
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Let Cn+2 be the cone in Rn+3
2 and Qn+1

1 the conformal compactification space in RPn+3 defined by the
following:

Cn+2 = {X ∈ Rn+3
2 |⟨X, X⟩2 = 0, X , 0}, Qn+1

1 = {[X] ∈ RPn+2|⟨X, X⟩2 = 0}.

Let O(n + 3, 2) be the Lorentzian group of the Rn+3
2 keeping ⟨, ⟩2 invariant. O(n + 3, 2) is also a

transformation group of Qn+1
1 and the action is defined by the following:

T ([X]) = [XT ], X ∈ Cn+2, T ∈ O(n + 3, 2).

Topologically, Qn+1
1 is identified with the compact space Sn×S1/S0, which is endowed by a standard

Lorentzian metric h = gSn ⊕ (−gS1), where gSk denotes the standard metric of the k-dimensional sphere
Sk. Therefore, Qn+1

1 has the conformal metric class [h] and [O(n+3, 2)] is the conformal transformation
group of Qn+1

1 (see [1, 5]).
Let X = (x1, · · · , xn+3) ∈ Rn+3

2 , P = {[X] ∈ Qn+1
1 |x1 = xn+3}, P− = {[X] ∈ Qn+1

1 |xn+3 = 0}, P+ = {[X] ∈
Qn+1

1 |x1 = 0}, we can define the following conformal diffeomorphisms:

σ0 : Rn+1
1 → Qn+1

1 \P, u 7→ [( 1+⟨u,u⟩1
2 , u, ⟨u,u⟩1−1

2 )],
σ1 : Sn+1

1 (1)→ Qn+1
1 \P+, u 7→ [(1, u)],

σ−1 : Hn+1
1 (−1)→ Qn+1

1 \P−, u 7→ [(u, 1)].
(2.1)

We may regard Qn+1
1 as the common compactification of Rn+1

1 ,Sn+1
1 (1),Hn+1

1 (−1).
Let f : Mn → Mn+1

1 (c) be a spacelike hypersurface. Using σc, we obtain the hypersurface σc ◦ f :
Mn → Qn+1

1 in Qn+1
1 . From [1, 2], we have the following theorem.

Theorem 2.1. [2] Two hypersurfaces f , f̄ : Mn → Mn+1
1 (c) are conformally equivalent if and only if

there exists T ∈ O(n + 3, 2) such that σc ◦ f = T (σc ◦ f̄ ) : Mn → Qn+1
1 .

Let f : Mn → Rn+1
1 be an umbilic-free spacelike hypersurface, II be the second fundamental form,

and H be the mean curvature; then, the conformal position vector Y : Mn → Rn+3
2 of the spacelike

hypersurface f is defined by the following:

Y = ρ2
(⟨ f , f ⟩1 + 1

2
, f ,
⟨ f , f ⟩1 − 1

2

)
, ρ2 =

n
n − 1

(|II|2 − n|H|2).

Theorem 2.2. [2] Two spacelike hypersurfaces f , f̄ : Mn → Rn+1
1 are conformally equivalent if and

only if there exists T ∈ O(n + 3, 2) such that Ȳ = YT, where Y, Ȳ are the conformal position vector of
f , f̄ , respectively.

From Theorem 2.2, it immediately follows that

g = ⟨dY, dY⟩2 = ρ2⟨d f , d f ⟩1

is a conformal invariant, which is called the conformal metric of f .
Let {E1, · · · , En} be a local orthonormal basis of Mn with respect to g, with dual basis {ω1, · · · , ωn}.

Denote Yi = Ei(Y) and define the following:

N = −
1
n
∆Y −

1
2n2 ⟨∆Y,∆Y⟩2Y,
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where ∆ is the Laplace operator of g; then we have

⟨N,Y⟩2 = 1, ⟨N,N⟩2 = 0, ⟨N,Yk⟩2 = 0, ⟨Yi,Y j⟩2 = δi j, 1 ≤ i, j, k ≤ n.

We may decompose Rn+3
2 such that

Rn+3
2 = span{Y,N} ⊕ span{Y1, · · · ,Yn} ⊕ V,

whereV⊥span{Y,N,Y1, · · · ,Yn}. We callV the conformal normal bundle of f , which is a linear bundle.
Let ξ be a local section of V and ⟨ξ, ξ⟩2 = −1. ξ is called the conformal normal vector field of the
spacelike hypersurface. Therefore, {Y,N,Y1, · · · ,Yn, ξ} forms a moving frame in Rn+3

2 along Mn. We
write the structure equations as follows:

dY =
∑

i

ωiYi,

dN =
∑

i j

Ai jω jYi +
∑

i

Ciωiξ,

dYi = −
∑

j

Ai jω jY − ωiN +
∑

j

ωi jY j +
∑

j

Bi jω jξ,

dξ =
∑

i

CiωiY +
∑

i j

Bi jω jYi,

(2.2)

where ωi j(= −ω ji) are the connection 1-forms on Mn with respect to {ω1, · · · , ωn}. It is clear that
A =

∑
i j Ai jω j ⊗ ωi, B =

∑
i j Bi jω j ⊗ ωi, and C =

∑
i Ciωi are globally defined conformal invariants.

We call A, B and C the conformal 2-tensor, the conformal second fundamental form and the conformal
1-form, respectively. The covariant derivatives of these tensors are defined by the following:∑

j

Ci, jω j = dCi +
∑

k

Ckωk j,∑
k

Ai j,kωk = dAi j +
∑

k

Aikωk j +
∑

k

Ak jωki,∑
k

Bi j,kωk = dBi j +
∑

k

Bikωk j +
∑

k

Bk jωki.

By exterior differentiation of the structure Eq (2.2), we can get the integrable conditions of the
structure equations

Ai j = A ji, Bi j = B ji, (2.3)
Ai j,k − Aik, j = Bi jCk − BikC j, (2.4)
Bi j,k − Bik, j = δi jCk − δikC j, (2.5)

Ci, j −C j,i =
∑

k

(BikAk j − B jkAki), (2.6)

Ri jkl = BilB jk − BikB jl + Aikδ jl + A jlδik − Ailδ jk − A jkδil. (2.7)
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Furthermore, we have

tr(A) =
1

2n
(n2κ − 1), Ri j = tr(A)δi j + (n − 2)Ai j +

∑
k

BikBk j,

(1 − n)Ci =
∑

j

Bi j, j,
∑

i j

B2
i j =

n − 1
n

,
∑

i

Bii = 0,
(2.8)

where κ is the normalized scalar curvature of g. From (2.8), we see that when n ≥ 3, all coefficients
in the structure equations are determined by the conformal metric g and the conformal second
fundamental form B, thus we get the congruent theorem of spacelike hypersurfaces.

Theorem 2.3. [2] Two spacelike hypersurfaces f , f̄ : Mn → Rn+1
1 (n ≥ 3) are conformally equivalent

if and only if there exists a diffeomorphism φ : Mn → Mn which preserves the conformal metric g and
the conformal second fundamental form B.

The second covariant derivative of the conformal second fundamental form Bi j is defined by the
following: ∑

m

Bi j,kmωm = dBi j,k +
∑

m

Bm j,kωmi +
∑

m

Bim,kωm j +
∑

m

Bi j,mωmk. (2.9)

Thus, we have the following Ricci identities

Bi j,kl − Bi j,lk =
∑

m

Bm jRmikl +
∑

m

BimRm jkl. (2.10)

Next, we give the relations between the conformal invariants and the isometric invariants of a
spacelike hypersurface in Rn+1

1 .
Assume that f : Mn → Rn+1

1 is an umbilic-free spacelike hypersurface. Let {e1, · · · , en} be an
orthonormal local basis with respect to the induced metric I = ⟨d f , d f ⟩1 with dual basis {θ1, · · · , θn}.
Let en+1 be a normal vector field of f , ⟨en+1, en+1⟩1 = −1. Let II =

∑
i j hi jθi ⊗ θ j denote the second

fundamental form and H = 1
n

∑
i hii denote the mean curvature. Therefore, the conformal metric g and

conformal normal vector field ξ have the following expressions:

g = e2τI, e2τ =
n

n − 1
(|II|2 − n|H|2),

ξ = −Hy + (⟨ f , en+1⟩1, en+1, ⟨ f , en+1⟩1).
(2.11)

By a direct calculation, we get the following expressions of the conformal invariants:

Ai j = e−2τ[τiτ j − hi jH − τi, j +
1
2

(−|∇τ|2 + |H|2)δi j],

Bi j = e−τ(hi j − Hδi j),

Ci = e−2τ(Hτi − Hi −
∑

j

hi jτ j),

(2.12)

where τi = ei(τ) and |∇τ|2 =
∑

i τ
2
i , and τi, j is the Hessian of τ for I and Hi = ei(H).

Thus, {E1 = e−τe1, · · · , En = e−τen} is an orthonormal local basis with respect to the conformal
metric g and {ω = eτθ1, · · · , ωn = e−τθn} is the dual basis. Let {θi j|1 ≤ i, j ≤ n} denote the connection
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of the induced metric I = ⟨d f , d f ⟩1 with respect to the basis {θ1, · · · , θn} and {ωi j|1 ≤ i, j ≤ n} the
connection of the conformal metric g with respect to the basis {ω1, · · · , ωn}, then we have the following:

ωi j = θi j + ei(τ)θ j − e j(τ)θi. (2.13)

Let {b1, · · · , bn} be the eigenvalues of the conformal second fundamental form B, which are called
the conformal principal curvatures of f . Let {λ1, · · · , λn} be the principal curvatures of f . From (2.12),
we have

bi = e−τ(λi − H), i = 1, · · · , n. (2.14)

Clearly, the number of distinct conformal principal curvatures is the same as that of the principal
curvatures of f .

3. Examples of spacelike conformal Einstein hypersurfaces

In this section, we construct some examples of spacelike conformal Einstein hypersurfaces in a
Lorentzian space form Mn+1

1 (c). Using σc, we obtain the hypersurface σ−1
c̄ ◦ σc ◦ f : Mn → Rn+1

1
in Rn+1

1 for the spacelike hypersurface f in another Lorentzian space form Mn+1
1 (c), furthermore, the

conformal invariants of the spacelike hypersurfaces in Mn+1
1 (c) are invariant under the diffeomorphisms

σc (see Section 2 in [4]). Thus we can regard these spacelike hypersurfaces in Mn+1
1 (c) as in Rn+1

1 .

Example 3.1. For a constant a > 0, let x1 : Hk(−a)→ Rk+1
1 be the standard embedding and y : Rn−k →

Rn−k be the identity. We define the spacelike hypersurface as follows:

f = (x1, y) : Hk(−a) × Rn−k → Rn+1
1 , 1 ≤ k ≤ n − 1.

Let ξ = ( 1
a x1,
−→
0 ) be a normal vector field of f . Thus,

I = ⟨dx, dx⟩1 = gHk(−a) + gRn−k , II = −⟨dx, dξ⟩1 =
−1
a

gHk(−a),

where gHk(−a) denotes the standard metric on Hk(−a) and gRn−k the standard metric on Rn−k. Let
{e1, · · · , ek} be a local orthonormal basis on THk(−a) and {ek+1, · · · , en} be a local orthonormal
basis on TRn−k; then under the local orthonormal basis {e1, · · · , en} on T (Hk(−a) × Rn−k),

(
hi j

)
=

diag(−1
a , · · · ,

−1
a , 0, · · · , 0). From (2.12), we have that the conformal 1-form C = 0 and under the local

orthonormal basis,

(Bi j) = diag(b1, · · · , b1︸      ︷︷      ︸
k

, b2, · · · , b2︸      ︷︷      ︸
n−k

), (Ai j) = diag(a1, · · · , a1︸      ︷︷      ︸
k

, a2, · · · , a2︸      ︷︷      ︸
n−k

),

where

b1 =

√
(n − 1)(n − k)

n2k
, b2 = −

√
(n − 1)k
n2(n − k)

, a1 =
(n − 1)(k − 2n)

2n2(n − k)
, a2 =

(n − 1)k
2n2(n − k)

.

From (2.8) and above data, the Ricci curvature Ri j with respect to the conformal metric g are given
by the following:

R11 = · · · = Rkk =
(n − 1)(1 − k)

(n − k)k
, Rk+1k+1 = · · · = Rnn = 0.
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Thus, the spacelike hypersurface f : Hk(−a) × Rn−k → Rn+1
1 is a conformal Einstein hypersurface

if and only if k = 1, which is of constant conformal sectional curvature δ = 0. In fact, the conformal
Einstein hypersurface is a cylinder over the curvature-spiral with a constant geodesic curvature.

Example 3.2. Let x1 : Sk(1) → Rk+1 and x2 : Hn−k(−1) → Rn−k+1
1 be two standard embeddings. For a

constant a > 0, we define the spacelike hypersurface as follows:

f = (
√

1 + a2x1, ax2) : Sk(
√

1 + a2) × Hn−k(−a)→ Sn+1
1 (1), 1 ≤ k ≤ n − 1.

Let ξ = (ax1,
√

1 + a2x2) be a normal vector field of f . Thus,

I = (1 + a2)gSk(1) + a2gHn−k(−1), II = −a
√

1 + a2(gSk(1) + gHn−k(−1)).

Let {e1, · · · , ek} be a local orthonormal basis on TSk(
√

1 + a2) and {ek+1, · · · , en} be a local
orthonormal basis on THn−k(−a); then under the local orthonormal basis {e1, · · · , en},

(
hi j

)
=

diag( −a
√

1+a2
, · · · , −a

√
1+a2

, −
√

1+a2

a , · · · , −
√

1+a2

a ). From (2.12), we have that C = 0 and under the local
orthonormal basis,

(Bi j) = diag(b1, · · · , b1︸      ︷︷      ︸
k

, b2, · · · , b2︸      ︷︷      ︸
n−k

), (Ai j) = diag(a1, · · · , a1︸      ︷︷      ︸
k

, a2, · · · , a2︸      ︷︷      ︸
n−k

),

where

b1 =
1
n

√
(n − 1)(n − k)

k
, b2 =

−1
n

√
(n − 1)k

n − k
,

a1 =
n − 1

k(n − k)
(n − k)2 + n2a2

2n2 , a2 =
n − 1

k(n − k)
k2 − n2a2 − n2

2n2 .

By direct calculation using the Eq (2.8), the spacelike hypersurface f is not a conformal Einstein
hypersurface.

Example 3.3. Let x1 : Hk(−1) → Rk+1
1 and x2 : Hn−k(−1) → Rn−k+1

1 be two standard embeddings. For
0 < a < 1, we define the spacelike hypersurface as follows:

f = (
√

1 − a2x1, ax2) : Hk(−
√

1 − a2) × Hn−k(−a)→ Hn+1
1 (−1), 1 ≤ k ≤ n − 1.

Let ξ = (−ax1,
√

1 − a2x2) be a normal vector field of f . Thus,

I = (1 − a2)gHk(−1) + a2gHn−k(−1), II = a
√

1 − a2(gHk(−1) − gHn−k(−1)).

Let {e1, · · · , ek} be a local orthonormal basis on THk(−a) and {ek+1, · · · , en} be a local
orthonormal basis on THn−k(−

√
1 − a2); then under the local orthonormal basis {e1, · · · , en},

(
hi j

)
=

diag( a
√

1−a2
, · · · , a

√
1−a2

, −
√

1−a2

a , · · · , −
√

1−a2

a ). From (2.12), we have that C = 0 and under the local
orthonormal basis

(Bi j) = diag(b1, · · · , b1︸      ︷︷      ︸
k

, b2, · · · , b2︸      ︷︷      ︸
n−k

), (Ai j) = diag(a1, · · · , a1︸      ︷︷      ︸
k

, a2, · · · , a2︸      ︷︷      ︸
n−k

),

AIMS Mathematics Volume 8, Issue 10, 23247–23271.



23255

where

b1 =
1
n

√
(n − 1)(n − k)

k
, b2 =

−1
n

√
(n − 1)k

n − k
,

a1 =
n − 1

k(n − k)
(n − k)2 − n2a2

2n2 , a2 =
n − 1

k(n − k)
n2a2 − n2 + k2

2n2 .

By direct calculation using the Eq (2.8), the Ricci curvature with respect to the conformal metric g
is given by the following:

R11 = · · · = Rkk =
(n − 1)(n − k − 1)

2nk
+

(n − 1)(1 − k)a2

(n − k)k
,

Rk+1k+1 = · · · = Rnn =
(n − 1)(k2 + k − n(n − 1))

2nk(n − k)
+

(n − 1)(n − k − 1)a2

(n − k)k
.

Thus, the spacelike hypersurface f : Hk(−
√

1 − a2)×Hn−k(−a)→ Hn+1
1 (−1) is a conformal Einstein

hypersurface if and only if a =
√

n−k−1
n−2 , i.e.,

f : Hk
(
−

√
k − 1
n − 2

)
× Hn−k

(
−

√
n − k − 1

n − 2

)
→ Hn+1

1 (−1), 1 < k < n − 1.

Example 3.4. For 1 ≤ p, q ≤ n with p + q < n and a constant a > 1, we define the spacelike
hypersurface

f : Hq(−
√

a2 − 1) × Sp(a) × R+ × Rn−p−q−1 → Rn+1
1 ,

defined by
f (u′, u′′, t, u′′′) = (tu′, tu′′, u′′′),

where u′ ∈ Hq(−
√

a2 − 1), u′′ ∈ Sp(a), u′′′ ∈ Rn−p−q−1.

Let b =
√

a2 − 1. One of the normal vector to f can be taken as en+1 = ( a
bu′, b

au′′, 0). The first and
second fundamental form of f are given by the following:

I = t2(⟨du′, du′⟩1 + ⟨du′′, du′′⟩) + dt · dt + ⟨du′′′, du′′′⟩,

II = −⟨dx, den+1⟩1 = −t(
a
b
⟨du′, du′⟩1 +

b
a
⟨du′′, du′′⟩).

Thus, the mean curvature of f satisfies H =
−pb2−qa2

nabt and e2τ = n
n−1 [

∑
i j h2

i j − nH2] =
p(n−p)b4−2pqa2b2+q(n−q)a4

(n−1)a2b2t2 := α2

t2 . The conformal metric is as follows:

g = α2⟨du′, du′⟩1 + α2⟨du′′, du′′⟩ +
α2

t2 (dt · dt + ⟨du′′′, du′′′⟩).

From (2.12), we have C = 0 and

(Bi j) = diag(b1, · · · , b1︸      ︷︷      ︸
q

, b2, · · · , b2︸      ︷︷      ︸
p

, b3, · · · , b3︸      ︷︷      ︸
n−p−q

),

(Ai j) = diag(a1, · · · , a1︸      ︷︷      ︸
q

, a2, · · · , a2︸      ︷︷      ︸
p

, a3, · · · , a3︸      ︷︷      ︸
n−p−q

),
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where b1 =
pb2−(n−q)a2

nabα , b2 =
qa2−(n−p)b2

nabα , b3 =
pb2+qa2

nabα , and

a1 =
(pb2 + qa2)2 − (pb2 + qa2)2na2 + n2a2b2

2n2a2b2α2 ,

a2 =
(pb2 + qa2)2 − (pb2 + qa2)2nb2 + n2a2b2

2n2a2b2α2 , a3 =
(pb2 + qa2)2 − n2a2b2

2n2a2b2α2 .

By direct calculation, using the Eq (2.8), we can see that the spacelike hypersurface f is a conformal
Einstein hypersurface if and only if p = q = 1 and n = 3, which is of a constant conformal sectional
curvature δ = 0.

A spacelike hypersurface with constant conformal principal curvatures and vanishing conformal 1-
form is called a conformal isoparametric hypersurface. By the main theorem in [4], Examples 3.1–3.4
are all spacelike conformal isoparametric hypersurfaces. Thus, we have following results.

Proposition 3.1. Let f : Mn → Rn+1
1 be a spacelike conformal isoparametric hypersurface. If f is

conformal Einstein, then f is locally conformally equivalent to one of the following examples:

1) the cylinder f : H1(−a) × Rn−1 → Rn+1
1 ;

2) the spacelike hypersurface

f : Hk
(
−

√
k − 1
n − 2

)
× Hn−k

(
−

√
n − k − 1

n − 2

)
→ Hn+1

1 (−1), 1 < k < n − 1;

3) the spacelike hypersurface

f : H1(−
√

a2 − 1) × S1(a) × R+ → R4
1.

Particularly, the spacelike hypersurfaces in (1) and (2) have only two distinct principal curvatures.

Example 3.5. Let u : M2 → R3
1 be a spacelike surface in R3

1. We define the cylinder f over the
spacelike surface u in Rn+1

1 by

f = (u, id) : M2 × Rn−2 → R3
1 × R

n−2 = Rn+1
1 ,

where id : Rn−2 → Rn−2 denotes the identity map.
Let η be the unit normal vector of u. Then, en+1 = (η, 0⃗) is the unit normal vector of f . The induced

metric I and the second fundamental form II of f are given by

I = Iu + gRn−2 , II = IIu, (3.1)

where Iu, IIu are the induced metric and the second fundamental forms of u, respectively. Let λ1, λ2

be the principal curvatures of the spacelike surface u. The principal curvatures of the cylinder f are
obviously λ1, λ2, 0, . . . , 0. The conformal metric g of the cylinder f is

g =
n

n − 1
(|II|2 − nH2)I =

(
4H2

u −
2n

n − 1
Ku

)
(Iu + gRn−2), (3.2)

where Hu,Ku are the mean curvature and the Gauss curvature of u, respectively.
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Example 3.6. Let u : M2 −→ S3
1 ⊂ R

4 be a spacelike surface in S3
1. We define the cone over the

spacelike surface u in Rn+1
1 by the following:

f : M2 × R+ × Rn−3 −→ Rn+1
1 , f (x, t, y) = (tu(x), y).

By direct calculation, the induced metric and the second fundamental forms of the cone f are,
respectively,

I = t2Iu + gRn−2 , II = t IIu,

where Iu, IIu, IRn−2 are understood as before. Let λ1, λ2 be the principal curvatures of the spacelike
surface u. The principal curvatures of the hypersurface f are 1

t λ1,
1
t λ2, 0, . . . , 0. Thus, the conformal

metric g of the cone f is as follows:

g = ρ2I =
1
t2

[
4H2

u −
2n

n − 1
(Ku − 1)

]
(t2Iu + gRn−2)

=

[
4H2

u −
2n

n − 1
(Ku − 1)

]
(Iu + gHn−2),

(3.3)

where Hu,Ku are the mean curvature and Gauss curvature of u, respectively. From (2.12), we know
that the conformal position vector of the cone f is as follows:

Y =
[
4H2

u −
2n

n − 1
(Ku − 1)

] ( t2 + ⟨y, y⟩ + 1
2t

, u,
y
t
,

t2 + ⟨y, y⟩ − 1
2t

)
.

Note that

i(t, y) = (
t2 + ⟨y, y⟩ + 1

2t
,

y
t
,

t2 + ⟨y, y⟩ − 1
2t

) : R+ × Rn−2 → Hn−1 ⊂ Rn
1 (3.4)

is nothing but the identity map of Hn−1, since R+ × Rn−2 = Hn−1 is the upper half-space endowed with
the standard hyperbolic metric.

The n-dimensional Lorentzian hyperbolic plane Rn
1+ ⊂ R

n
1 is defined by

Rn
1+ = {(x1, x1, · · · , xn) ∈ Rn

1|xn > 0},

and endowed by the Lorentzian metric ds2 = 1
x2

n
(−dx1⊗dx1+dx2⊗dx2+ · · ·+dxn⊗dxn). The sectional

curvature of Rn
1+ is −1 with respect to the Lorentzian metric ds2. For p = (x1, x1, · · · , xn) ∈ Rn

1+, let
x̄ = (x1, x1, · · · , xn−1), then p = (x̄, xn). There exists a standard isometric mapping ϕ : Rn

1+ → H
n
1(−1)

defined by

ϕ(x1, · · · , xn) = ϕ(x̄, xn) =
( x2

n + ⟨x̄, x̄⟩1 + 1
2xn

,
x̄
xn
,

x2
n + ⟨x̄, x̄⟩1 − 1

2xn

)
. (3.5)

Example 3.7. Let u = (x1, x2, x3) : M2 −→ R3
1+ be a spacelike surface in the 3-dimensional Lorentzian

hyperbolic plane R3
1+. We define the rotational hypersurface over the spacelike u in Rn+1

1 as follows:

f : M2 × Sn−2 −→ Rn+1
1 , f (x1, x2, x3, θ) = (x1, x2, x3θ),

where θ : Sn−2 −→ Rn−1 is the standard sphere.
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Let η be the unit normal vector of the spacelike surface u given by η = (η1, η2, η3). Then, the unit
normal vector of the rotational hypersurface f in Rn+1

1 is as follows:

ξ =
1
x3

(η1, η2, η3θ).

By direct calculation, the induced metric and the second fundamental form of u are, respectively,

Iu =
1
x2

3

(−dx1 · dx1 + dx2 · dx2 + dx3 · dx3),

IIu = −⟨τ∗(du), τ∗(dη)⟩ =
1
x2

3

(−dx1 · dη1 + dx2 · dη2 + dx3 · dη3) −
η3

x3
Iu.

Thus, we can write out the induced metric and the second fundamental form of f ,

I = x2
3(Iu + gSn−2), II = x3IIu − η3Iu − η3gSn−2 .

Let λ1, λ2 be the principal curvatures of u. Then, the principal curvatures of the rotational
hypersurface f are

λ1

x3
−
η3

x2
3

,
λ2

x3
−
η3

x2
3

,
−η3

x2
3

, . . . ,
−η3

x2
3

.

Thus,

ρ2 =
n

n − 1
(|II|2 − nH2) =

1
x2

3

[
4H2

u −
2n

n − 1
(Ku + 1)

]
,

where Hu,Ku are the mean curvature and Gauss curvature of u, respectively. Therefore, the conformal
metric of the rotational hypersurface f is as follows:

g = ρ2I =
[
4H2

u −
2n

n − 1
(Ku + 1)

]
(Iu + gSn−2). (3.6)

From Examples 3.5–3.7, the cylinder, the cone and the rotational hypersurface can be written by

f : M2 × Nn−2(c) −→ Rn+1
1 ,

when f is a cylinder over a spacelike surface u(M2) ⊂ R3
1, c = 0 and Nn−2(c) = Rn−2; a cone

over a spacelike surface u(M2) ⊂ S3
1, c = −1 and Nn−2(c) = R+ × Rn−3 = Hn−2; and a rotational

hypersurface over a spacelike surface u(M2) ⊂ R3
1+, c = 1 and Nn−2(c) = Sn−2. Let the induced metric,

the Gauss curvature, and the mean curvature of the spacelike surface u, be denoted by Iu, Ku, and
Hu, respectively. From (3.2), (3.3) and (3.6), the conformal metric of the cylinder, the cone and the
rotational hypersurface f can be unified in a single formula:

g =
[
4H2

u −
2n

n − 1
(Ku + c)

]
(Iu + gNn−2(c)) := ϕ2(Iu + gNn−2(c)), (3.7)

where gNn−2(c) is the Riemannian metric of an (n − 2)-dimensional space form of constant curvature c.
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Proposition 3.2. Let f : Mn → Rn+1
1 (n ≥ 4) be the cylinder, or the cone, or the rotational

hypersurface over an umbilic-free spacelike surface u : M2 → M3
1(c), which was constructed as

Examples 3.5–3.7. Then, the spacelike hypersurface f is a spacelike conformal Einstein hypersurface
with the Ricci curvature λ if and only if u is a spacelike (λ, n)-surface in M3

1(c).

Proof. Now we take the local orthonormal basis {e1, e2} on T M2 with respect to Iu, consisting of
principal vectors. Let {e3, . . . , en} be a local orthonormal basis on T Nn−2(c), then, {e1, e2, e3, . . . , en}

is a orthonormal basis on T (M2 × Nn−2(c)) with respect to the product metric Iu + INn−2(c).
Let R̃i jkl denote the curvature tensor with respect to Iu + INn−2(c), and Ri jkl denote the curvature tensor

with respect to the conformal metric g. Let µ = 1
ϕ
= 1√

4H2
u−

2n
n−1 (Ku+c)

, then by direct computation (also

see [6]), we have the following:

Ri ji j = µ
2R̃i ji j + µµii + µµ j j − |∇µ|

2, i , j,

Ri jik = µ
2R̃i jik + µµ jk, i , j, j , k, k , i,

(3.8)

where µi j and ∇µ are the Hessian matrix and the gradient of µ with respect to the metric Iu + INn−2(c).
Since the metric Iu + INn−2(c) is a Riemannian product metric, thus

µi = 0, µi j = 0, R1i1i = R2i2i = 0, i, j ≥ 3.

Thus, we have
|∇µ|2 = µ2

1 + µ
2
2 = |∇uµ|

2, ∆µ = µ11 + µ22 = ∆uµ,

where ∆uµ and ∇uµ are the Hessian matrix and the gradient of µ with respect to the metric Iu.
Now, we assume that the Ricci curvature with respect to the conformal metric g is λ, then from the

first equation of (3.8),

λ =
∑
k,1

R1k1k = µ
2
∑
k,1

R̃1k1k + (n − 1)µµ11 +
∑
k,1

µµkk − (n − 1)|∇µ|2

= µ2Ku + µ∆µ + (n − 2)µµ11 − (n − 1)|∇µ|2.

Similarly, we have

λ = µ2(n − 3)c + µ∆µ − (n − 1)|∇µ|2,
λ = µ2Ku + µ∆µ + (n − 2)µµ11 − (n − 1)|∇µ|2,
λ = µ2Ku + µ∆µ + (n − 2)µµ22 − (n − 1)|∇µ|2.

(3.9)

From above equations, we have

µ12 = 0,

∆µ =
2µ

n − 2
[(n − 3)c − Ku] = 2µ11 = 2µ22,

|∇µ|2 = µ2
1 + µ

2
2 =

µ2[n(n − 3)c − 2Ku]
(n − 1)(n − 2)

−
λ

n − 1
.

(3.10)

Thus,

Hessu(µ)(ei, e j) =
(n − 3)cµ − µKµ

n − 2
Iu(ei, e j), ei, e j ∈ T M2,
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where Hessu is the Hessian matrix with respect to the metric Iu. By the Definition 1.1, we know that u
is a spacelike (λ, n)-surface in M3

1(c).
Let u be a spacelike (λ, n)-surface in M3

1(c). We note that the conformal metric of f is given
by (3.7), by direct calculation we know that f is a spacelike conformal Einstein hypersurface with
Ricci curvature λ. Thus, we finish the proof. □

4. The proof of the main Theorem 1.2

Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface without umbilical

points. Since three dimensional Einstein manifolds are of constant sectional curvature, in this section,
we assume n ≥ 4. Because of the local nature of our results, we can assume that the multiplicities of
all principal curvatures are locally constant. In fact, there always exists an open dense subset U of Mn

on which the multiplicities of the principal curvatures are locally constant.
We assume that the spacelike Einstein hypersurface has (s + t) distinct principal curvatures. Since

the multiplicities of all principal curvatures are locally constant, we can choose a local orthonormal
basis {E1, . . . , En} with respect to the conformal metric g such that

(Bi j) = diag{b1, b2, · · · , bn} = diag{b̄1, b̄2, . . . , b̄s, b̄s+1, . . . , b̄s+1, . . . , b̄s+t, . . . , b̄s+t}.

Here, the conformal principal curvatures b̄1, . . . , b̄s are simple, the multiplicities of the conformal
principal curvatures b̄s+1, . . . , b̄s+t are greater than one. Under this local orthonormal basis, let the
index set

[i] = {m|bm = bi}.

As the spacelike hypersurface is a conformal Einstein, from (2.8), we have the following:

Ri j = λδi j =
∑

k

BikBk j + tr(A)δij + (n − 2)Aij. (4.1)

Thus, under the basis {E1, . . . , En}, we have

(Ai j) = diag{a1, . . . , an}, ai =
1

n − 2
(λ − b2

i − tr(A)), 1 ≤ i ≤ n. (4.2)

Since f is a spacelike Einstein hypersurface, λ and tr(A) are constant.
By the covariant derivative for the Eq (4.1), we get that

Ai j,k =
−1

n − 2
(
∑

m

Bim,kBm j +
∑

m

BimBm j,k).

Thus, under the basis {E1, . . . , En}, we have

−(bi + b j)Bi j,k = (n − 2)Ai j,k. (4.3)

Lemma 4.1. Under the basis {E1, . . . , En}, the conformal invariants of f have the following relations:

(1) Ci = 0; i > s,

(2) Bi j,k = 0, i , j, j , k, k , i, Bii, j = 0, i , j, i, j ∈ [i],

(3) B j j,i =
bi + (n − 1)b j

bi − b j
Ci, Bi j, j =

nb j

bi − b j
Ci, [i] , [ j],

(4) ωi j =
Bi j,i

bi − b j
ωi +

Bi j, j

bi − b j
ω j =

nb jCi

(bi − b j)2ω j −
nbiC j

(bi − b j)2ωi, [i] , [ j].

(4.4)
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Proof. Using dBi j +
∑

k Bk jωki +
∑

k Bikωk j =
∑

k Bi j,kωk, let [i] = [ j], i , j, so bi = b j, we get

Bi j,k = 0, [i] = [ j], i , j, 1 ≤ k ≤ n. (4.5)

Particularly, Bi j, j = 0. Using (2.4) and (2.5),

Ai j, j − A j j,i = −b jCi, Bi j, j − B j j,i = −Ci,

from (4.3), we obtain
n

n − 2
b jCi = 0,

If b j , 0, then Ci = 0. If b j = 0, then Ei(b j) = B j j,i = 0. Combining Bi j, j = 0, thus Ci = 0.
Therefore,

Ci = 0, i > s,

which proves the Eq (1) in Lemma 4.1.
If i , j, j , k, i , k, then Bi j,k = Bik, j, Ai j,k = Aik, j. Moreover, if bi , b j or bi , bk, using (4.3) we

obtain the following:
Bi j,k = Ai j,k = 0, i , j, j , k, i , k. (4.6)

If bi = b j, combining (4.5) and (4.6), we obtain the following:

Bi j,k = 0, i, j > s, i , j; 1 ≤ k ≤ n.

Thus, we obtain the Eq (2) in Lemma 4.1.
If [i] , [ j], using (2.4), (2.5) and (4.3), we obtain that

−b jCi = Ai j, j − A j j,i = −
bi + b j

n − 2
Bi j, j +

2b j

n − 2
B j j,i = −

bi + b j

n − 2
Bi j, j +

2b j

n − 2
(Bi j, j +Ci),

and

B j j,i =
bi + (n − 1)b j

bi − b j
Ci, Bi j, j =

nb j

bi − b j
Ci, bi , b j.

Thus, we obtain the Eq (3) in Lemma 4.1.
Using dBi j +

∑
k Bk jωki +

∑
k Bikωk j =

∑
k Bi j,kωk, we have

(bi − b j)ωi j =
∑

k

Bi j,kωk.

Since bi , b j, we have

ωi j =
Bi j,i

bi − b j
ωi +

Bi j, j

bi − b j
ω j =

nb jCi

(bi − b j)2ω j −
nbiC j

(bi − b j)2ωi,

that completes proof of the Lemma 4.1. □

Proposition 4.1. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface without

an umbilical point. If the conformal 1-form C = 0, then f is locally conformally equivalent to one of
the following examples:
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1) the cylinder f : H1(−a) × Rn−1 → Rn+1
1 ; and

2) the spacelike hypersurface

f : Hk
(
−

√
k − 1
n − 2

)
× Hn−k

(
−

√
n − k − 1

n − 2

)
→ Hn+1

1 (−1), 1 < k < n − 1.

Particularly, f has only two distinct principal curvatures.

Proof. Since C = 0, from Lemma 4.1, we know that B j j,i = 0, i , j. Since tr(B) = 0, we have∑
m Bmm,i = 0 and Bii,i = 0. Thus Bi j,k = 0. Therefore, the conformal second fundamental form of f

is parallel. Particularly, the conformal principal curvatures are constant; thus, the spacelike conformal
Einstein hypersurfaces are conformal isoparametric hypersurfaces. By Proposition 3.1, we finish the
proof. □

Theorem 4.1. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface without

umbilical points; then, f has three distinct principal curvatures at most.

Proof. We assume that s + t ≥ 4. Next, we prove that there exists a contradiction.
Now we fix the indices i, j, k such that [i] , [ j], [ j] , [k], [k] , [i], then

Bi j,k = 0, i ∈ [i], j ∈ [ j], k ∈ [k].

Noting Ek(bi) = Bii,k, and using definition of Ci, j and Lemma 4.1, we can obtain the following:

Bi j, jk = Ek(Bi j, j) + Bk j, jωki(Ek)

= n
bk + (n − 1)b j

(bi − b j)(bk − b j)
CiCk +

nb j

bi − b j
Ci,k.

Similarly, we have

Bi j,k j =
n2b j

(bi − b j)(bk − b j)
CiCk.

From Ricci identity Bi j, jk − Bi j,k j = (bi − b j)R ji jk = 0, thus we obtain

CiCk + b jCi,k = 0. (4.7)

Since s + t ≥ 4, there is [l] such that [l] , [i], [ j], [k]. Similarly, we have

CiCk + blCi,k = 0. (4.8)

From (4.8) and (4.7), we can get

(b j − bl)Ci,k = 0, CiCk = 0.

This implies that there are at least n − 1 zero elements in {C1, . . . ,Cn}, and we assume that

C2 = . . . = Cn = 0.

If the multiplicity of b1 is greater than one, then from Lemma 4.1, we have C1 = 0 and

Bi j,k = 0, 1 ≤ i, j, k ≤ n,
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thus B is parallel. From Proposition 4.1, we know that Mn has two distinct principal curvatures. This
is a contradiction.

Now, we assume that the multiplicity of b1 is one. Since s + t ≥ 4, we take i, j, k > 1. Noting
[i] , [ j], [ j] , [k], [k] , [i], so we have the following:

Ci = C j = Ck = 0, ωi j = 0, ωik = 0, ω jk = 0,

ω1i =
nbiC1

(b1 − bi)2ωi, ω1 j =
nb jC1

(b1 − b j)2ω j, ω1k =
nbkC1

(b1 − bk)2ωk.

Using dωi j −
∑

l ωil ∧ ωl j = −
1
2

∑
kl Ri jklωk ∧ ωl, we obtain the following:

Ri ji j = −bib j + ai + a j =
−n2bib j

(b1 − bi)2(b1 − b j)2 C2
1,

Rikik = −bibk + ai + ak =
−n2bibk

(b1 − bi)2(b1 − bk)2 C2
1,

(4.9)

where i ∈ [i], j ∈ [ j], k ∈ [k].
Subtracting the second formula of (4.9) from the first one, we obtained

bi(bk − b j) + (a j − ak) =
n2biC2

1(b j − bk)(b jbk − b2
1)

(b1 − bi)2(b1 − bk)2(b1 − b j)2 . (4.10)

From (4.1), we have ak − a j =
b2

j−b2
k

n−2 . Combining it with (4.10), we obtain

(n − 2)bi + b j + bk

n − 2
=

n2biC2
1(b2

1 − b jbk)
(b1 − bi)2(b1 − bk)2(b1 − b j)2 . (4.11)

Similarly,
(n − 2)b j + bi + bk

n − 2
=

n2b jC2
1(b2

1 − bibk)
(b1 − b j)2(b1 − bk)2(b1 − bi)2 . (4.12)

Using (4.11) and (4.12), we have

n2C2
1b2

1

(b1 − b j)2(b1 − bk)2(b1 − bi)2 =
n − 3
n − 2

. (4.13)

If s + t ≥ 5, then there exists another conformal principal curvature bl and

n2C2
1b2

1

(b1 − b j)2(b1 − bl)2(b1 − bi)2 =
n − 3
n − 2

. (4.14)

Combining the Eqs (4.13) and (4.14), we can get that bl = bk, which is a contradiction. Thus,

s + t = 4, n2b2
1C

2
1 =

n − 3
n − 2

(b1 − b j)2(b1 − bk)2(b1 − bi)2.
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This and (4.9) yield the following equations:

−bib j + ai + a j

(b1 − bk)2 =
−(n − 3)bib j

(n − 2)b2
1

,

−bibk + ai + ak

(b1 − b j)2 =
−(n − 3)bibk

(n − 2)b2
1

,

−b jbk + a j + ak

(b1 − bi)2 =
−(n − 3)b jbk

(n − 2)b2
1

.

(4.15)

Combining (2.8) and (4.1), it is easy to prove that the conformal principal curvatures {b1, bi, b j, bk}

are constant. Thus Bii,1 = B j j,1 = Bkk,1 = 0 and C1 = 0. Therefore, the conformal 1-form C = 0 and
from Proposition 4.1 we know that s + t = 2, which is a contradiction. Thus, we complete proof of the
Theorem 4.1. □

Since s + t ≤ 3, we consider two cases:
Case 1. s + t = 2;
Case 2. s + t = 3.

First, we consider Case 1, s + t = 2, we have the following results.

Theorem 4.2. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface with

two distinct principal curvatures, then f is locally conformally equivalent to one of the following
hypersurfaces:

1) the spacelike hypersurfaces with constant conformal sectional curvature;
2) the spacelike hypersurface

f : Hk
(
−

√
k − 1
n − 2

)
× Hn−k

(
−

√
n − k − 1

n − 2

)
→ Hn+1

1 (−1), 1 < k < n − 1.

Proof. We assume that the spacelike conformal Einstein hypersurface has two distinct conformal
principal curvatures b1, b2. If the multiplicities of the conformal principal curvatures b1, b2 are greater
than 1, then the conformal 1-form C = 0. By Proposition 4.1, we finish the proof.

If one of conformal principal curvatures b1, b2 is simple, then the spacelike hypersurface is
conformally flat. Since the spacelike hypersurface is conformal Einstein, then the spacelike conformal
Einstein hypersurface is of constant conformal sectional curvature. Thus we finish the proof. □

Next, we consider Case 2, s + t = 3, that is, the spacelike conformal Einstein hypersurface
has three distinct conformal principal curvatures b1, b2, b3. If the multiplicities of the conformal
principal curvatures b1, b2, b3 are greater than 1, then the conformal 1-form C = 0 by Lemma 4.1.
By Proposition 4.1, we know that such a hypersurface does not exist. Thus, we need to consider the
following two subcases, (1) {b1, . . . , bn} = {b1, µ, . . . , µ, ν, . . . , ν}, (2) {b1, . . . , bn} = {b1, b2, µ, . . . , µ}.

The following proposition means that the subcase (1) cannot occur.

Proposition 4.2. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike hypersurface. If f has three distinct

principal curvatures and one of the principal curvatures is simple, i.e.,
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{b1, . . . , bn} = {b1, µ, . . . , µ︸   ︷︷   ︸
s

, ν, . . . , ν︸  ︷︷  ︸
t

}, 1 + s + t = n, s, t ≥ 2.

Then, the conformal Ricci curvature of f can not be constant.

Proof. Let i ∈ {m|bm = µ}, j ∈ {m|bm = ν}, from Lemma 4.1, we have

C2 = . . . = Cn = 0,

B1i,i =
nµ

b1 − µ
C1, B1 j, j =

nν
b1 − ν

C1,

ω1i =
B1i,i

b1 − µ
ωi, ω1 j =

B1 j, j

b1 − ν
ω j,

(4.16)

Since B j j,1 = B1 j, j +C1, from (4.16), we obtain

Bii,1 =
b1 + (n − 1)µ

b1 − µ
C1, B j j,1 =

b1 + (n − 1)ν
b1 − ν

C1. (4.17)

Since tr(B) = 0, ▽E1 tr(B) = tr(▽E1B) = 0 (i.e.,
∑

m Bmm,1 = 0). Combining it with b1 + sµ + tν = 0 and
b2

1 + sµ2 + tν2 = n−1
n , yields the following:

B11,1 = −sBii,1 − tB j j,1 =
nb2

1 −
n−1

n

(b1 − µ)(b1 − ν)
C1. (4.18)

Using dωi j −
∑

l ωil ∧ ωl j = −
1
2

∑
kl Ri jklωk ∧ ωl, we obtain

Ri ji j =
−n2µνC2

1

(b1 − µ)2(b1 − ν)2 . (4.19)

Using the definition of Bi j,kl and Lemma 4.1, we have

B1i,i1 =
b1Bii,1 − µB11,1

(b1 − µ)2 nC1 +
nµ

b1 − µ
C1,1, B1i,1i = (B11,1 − Bii,1 − B1i,i)

nµC1

(b1 − µ)2 ,

B1 j, j1 =
b1B j j,1 − νB11,1

(b1 − ν)2 nC1 +
nν

b1 − ν
C1,1, B1 j,1 j = (B11,1 − B j j,1 − B1 j, j)

nνC1

(b1 − ν)2 .

Using Ricci identity B1i,i1 − B1i,1i = (µ − b1)R1i1i and Lemma 4.1, we obtain the following:

(b1 − µ)2R1i1i =
nC1

b1 − µ
[2µB11,1 − (b1 + µ)Bii,1 − µB1i,i] − nµC1,1,

(b1 − ν)2R1 j1 j =
nC1

b1 − ν
[2νB11,1 − (b1 + ν)B j j,1 − νB1 j, j] − nνC1,1,

(4.20)

From (4.20), (4.16) and (4.18), we can obtain the following:

(b1 − µ)2νR1i1i − (b1 − ν)2µR1 j1 j =
n(µ − ν)C2

1

(b1 − µ)2(b1 − ν)2χ,

χ := b2
1[µ2 + ν2 + b2

1 − 2b1(µ + ν) − 4(n − 1)µν] + (3n − 2)b1µν(µ + ν)
+ (2n2 − 2n + 1)µ2ν2.
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Combining it with (4.19), we have

(b1 − µ)2νR1i1i − (b1 − ν)2µR1 j1 j +
µ − ν

nµν
χRi ji j = 0. (4.21)

Using (4.2), (4.21) and b1 + sµ + tν = 0, b2
1 + sµ2 + tν2 = n−1

n , we know that b1, µ, and ν are constant.
From Lemma 4.1, we get C1 = 0. Therefore, C = 0. Using Proposition 4.1, we know that f has only
two distinct principal curvatures, which is a contradiction, finishing the proof. □

Next let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface with three distinct

principal curvatures, two of then being simple, i.e.,

{b1, . . . , bn} = {b1, b2, µ, . . . , µ}.

Using (4.2), we have
(Ai j) = diag{a1, . . . , an} = {a1, a2, a, . . . , a}.

In the following section, we assume the index 3 ≤ α, β, γ ≤ n. From Lemma 4.1, we have

C3 = . . . = Cn = 0,

B1α,α =
nµ

b1 − µ
C1, B2α,α =

nν
b2 − ν

C1,

B12,1 =
nb1

b2 − b1
C2, B12,2 =

nb2

b1 − b2
C1,

ω1α =
B1i,i

b1 − µ
ωα, ω2α =

B2i,i

b2 − ν
ωα, ω12 =

B12,1

b1 − b2
ω1 +

B12,2

b1 − b2
ω2.

(4.22)

Thus, we can deduce the following results,

Eα(b1) = Eα(b2) = Eα(µ) = 0, Eα(C1) = Eα(C2) = 0. (4.23)

Using dω1α −
∑

m ω1m ∧ ωmα = −
1
2

∑
kl R1αklωk ∧ ωl and (4.22), we get

E1
( B1α,α

b1 − µ

)
+

( B1α,α

b1 − µ

)2
−

B12,1

b1 − b2

B2α,α

b2 − µ
= −R1α1α = b1µ − a1 − aα,

E2
( B1α,α

b1 − µ

)
=

B2α,α

b2 − µ

B12,2

b1 − b2
−

B1α,α

b1 − µ

B2α,α

b2 − µ
.

(4.24)

Similarly, from dω2α −
∑

m ω2m ∧ ωmα = −
1
2

∑
kl R2αklωk ∧ ωl

E1
( B2α,α

b2 − µ

)
= −

B1α,α

b1 − µ

B12,1

b1 − b2
−

B1α,α

b1 − µ

B2α,α

b2 − µ
,

E2
( B2α,α

b2 − µ

)
+

( B2α,α

b2 − µ

)2
−

B12,2

b1 − b2

B1α,α

b1 − µ
= −R2α2α = b2µ − a2 − aα.

(4.25)

Under the orthonormal basis {E1, · · · , En}. {Y,N,Y1, · · · ,Yn, ξ} forms a moving frame in Rn+3
2 along

Mn. We define

F = ξ − µ, X1 = −
B1α,α

b1 − µ
Y + Y1, X2 = −

B2α,α

b2 − µ
Y + Y2,

P = aY − N + µF −
B1α,α

b1 − µ
X1 −

B2α,α

b2 − µ
X2,

K = 2a − µ2 +
( B1α,α

b1 − µ

)2
+

( B2α,α

b2 − µ

)2
.

(4.26)
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Since the conformal principal curvatures b1 and b1 are simple; thus, the principal vector fields E1

and E2 are well defined. Since the vectors Y,N,Y1,Y2, ξ are well defined alone the hypersurface, thus
the vectors F, X1, X2, P,K are also well defined. It is easy to get that

⟨F, F⟩2 = −1, ⟨X1, X1⟩2 = ⟨X2, X2⟩2 = 1, ⟨P, P⟩2 = −K.

⟨F, X1⟩2 = ⟨F, X2⟩2 = ⟨F, P⟩2 = ⟨X1, X2⟩2 = ⟨X1, P⟩2 = ⟨X2, P⟩2 = 0.

By direct calculation, from (2.2), (4.23), (4.24) and (4.25), we have the following equations:

E1(F) = (b1 − µ)X1, E2(F) = (b2 − µ)X2, Eα(F) = 0,

E1(X1) = P +
( B2α,α

b2 − µ
+

B12,1

b1 − b2

)
X2 + (b1 − µ)F,

E2(X1) =
( B12,2

b1 − b2
+

B1α,α

b1 − µ

)
X2, Eα(X1) = 0.

(4.27)

E1(X2) = −
( B12,1

b1 − b2
+

B2α,α

b2 − µ

)
X1,

E2(X2) = P +
( B1α,α

b1 − µ
−

B12,2

b1 − b2

)
X1 + (b2 − µ)F, Eα(X2) = 0,

E1(P) = −
B1α,α

b1 − µ
P + KX1, E2(P) = −

B2α,α

b2 − µ
P + KX2, Eα(P) = 0.

(4.28)

We define

T = aY + N − µξ +
B1α,α

b1 − µ
Y1 +

B2α,α

b2 − µ
Y2.

Then,
T + P = KY, ⟨P, P⟩2 = −K, ⟨T,T ⟩2 = K. (4.29)

By direct calculation, from (2.2), (4.23)–(4.25), we have the following equations:

E1(T ) = −
B1α,α

b1 − µ
T, E2(T ) = −

B2α,α

b2 − µ
T, Eα(T ) = KYα,

E1(Yα) =
∑
γ

ωαγ(E1)Yγ, E2(Yα) =
∑
γ

ωαγ(E2)Yγ,

Eα(Yα) = −T +
∑
γ

ωαγ(Eα)Yγ, Eβ(Yα) =
∑
γ

ωαγ(Eβ)Yγ, α , β.

(4.30)

From (4.27) and (4.28), we know that the subspace V1 = span{F, X1, X2, P} is fixed along Mn.
From (4.30), we know that the subspace V2 = span{T,Y3, · · · ,Yn} is fixed along Mn. Since T ⊥ V1,
thus

V1 ⊥ V2.

From the fourth equation in (4.22), we know that the distributions

D1 = S pan{E1, E2}, D2 = S pan{E3, · · · , En}
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are integrable. Let M̃2 be an integral submanifold of D1, by (4.27) and (4.28) the vector F induces a
2-dimensional submanifold in Hn+2

1
F : M̃2 → Hn+2

1 .

By direct calculation, from (2.2), (4.23)–(4.25), we have

E1(K) = −2
B1α,α

b1 − µ
K, E2(K) = −2

B2α,α

b2 − µ
K, Eα(K) = 0. (4.31)

Regarding (4.31) as a linear first order ODE for K, we know that K ≡ 0 or K , 0 on the connected
hypersurface Mn. Thus, we need to consider the following subcases: (1) K = 0 on Mn; (2) K < 0 on
Mn; (3) K > 0 on Mn. Next, we treat them case by case.

Proposition 4.3. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface with three

distinct principal curvatures. If K = 0, then f is locally conformally equivalent to a cylinder over a
spacelike (λ, n)-surface in R3

1, (n ≥ 4).

Proof. Since K = 0, then ⟨P, P⟩2 = 0, from (4.28) we have

E1(P) =
B1α,α

µ − b1
P, E2(P) =

B2α,α

µ − b2
P.

Therefore, P has a fixed direction, and we can write, up to a conformal transformation

P = ψ(1,−1, 0, · · · , 0) = ψe, ψ ∈ C∞(Mn),
S pan{F, X1, X2, P}

= S pan{e, (0, 0, 1, 0, · · · , 0), (0, 0, 0, 1, 0, · · · , 0), (0, 0, 0, 0, 1, 0, · · · , 0)}.

Let the spacelike hypersurface f : Mn → Rn+1
1 have the principal curvatures

λ1, λ2, λ, · · · , λ.

From ⟨P, F⟩2 = ⟨e, F⟩2 = 0, we get
λ = 0.

Similarly, from ⟨e, X1⟩2 = ⟨e, X2⟩2 = ⟨e,Yα⟩2 = 0, we get that

B1α,α

µ − b1
ρ + E1(ρ) = 0,

B2α,α

µ − b2
ρ + E2(ρ) = 0, Eα(ρ) = 0.

Thus, we have

E1(log ρ) =
B1α,α

b1 − µ
, E2(log ρ) =

B2α,α

b2 − µ
, Eα(ρ) = 0. (4.32)

Let {ei = ρEi, 1 ≤ i ≤ n}, then {e1, · · · , en} is a orthonormal basis of T Mn with respect to the induced
metric of f , {θ1, · · · , θn} its dual basis and {θi j} connection form with respect to basis {θ1, · · · , θn}. Then,
from (2.13), we obtain

θ1α = 0, θ2α = 0. (4.33)

Therefore, the spacelike hypersurface f : Mn → Rn+1
1 is conformally equivalent to the cylinder

hypersurface given by Example (3.5). By Proposition 3.2, we finish the proof. □
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Proposition 4.4. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface with

three distinct principal curvatures. If K < 0, then f is locally conformally equivalent to a cone over a
spacelike (λ, n)-surface in the Lorentzian space form S3

1(1), (n ≥ 4).

Proof. Since K < 0, by (4.29) the vector field P is a spacelike vector field in Rn+3
2 . Thus, up to a

conformal transformation we can write the following:

V1 = span{F, X1, X2, P}

= span{(0, 1, 0, ..., 0), (0, 0, 1, 0, ..., 0), (0, 0, 0, 1, ..., 0), (0, 0, 0, 0, 1, 0, ..., 0)}.

Since the spacelike hypersurface f has principal curvatures

{λ1, λ2, λ, · · · , λ},

and e = (1, 0, ..., 0, 1)⊥V1, we have ⟨F, e⟩2 = 0 which implies that

λ = 0.

Let

P̄ =
P
√
−K

, θ =
T
√
−K

,

then ⟨P̄, P̄⟩2 = 1, ⟨θ, θ⟩2 = −1. Eqs (4.27) and (4.28) mean that

P̄ : M̃2 → S3
1 ⊂ R

4
1 = V1

is a spacelike surface, and the Eq (4.30) mean that

θ : L→ Hn−2 ⊂ Rn−1
1

is a standard embedding and the sectional curvature of θ(L) is −1. Since dimL = dimHn−2 = n − 2, we
know that θ : L→ Hn−2 is a standard isometric isomorphism. By (3.4), we have the standard isometric
isomorphism

θ : L→ Hn−2 = R+ × Rn−3.

Since P + T = KY ,

Y =
1
√
−K

(P̄, θ) : Mn = M̃2 × L→ S3
1 × H

n−2 = S3
1 × R

+ × Rn−3 ⊂ Rn+3
1 .

Therefore, g = ⟨dY, dY⟩2 = −1
K (I + IHn−1). Thus, the spacelike hypersurface f is conformally

equivalent to the cone hypersurface given by Example 3.6. By Proposition 3.2, we finish the proof. □

Proposition 4.5. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface with

three distinct principal curvatures. If K > 0, then f is locally conformally equivalent to a rotational
hypersurface over a spacelike (λ, n)-surface in the Lorentzian space form R3

1+.
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Proof. Since K > 0, then ⟨P, P⟩2 < 0. Thus, up to a conformal transformation, we can write the
following:

V1 = span{F, X1, X2, P}

= span{(1, 0, · · · , 0), (0, 1, 0, · · · , 0), (0, · · · , 0, 1, 0), (0, · · · , 0, 1)}.

Thus, e = (1, 0, ..., 0, 1) ∈ V1 and ⟨Yα, e⟩2 = 0, 2 ≤ α ≤ n, which imply that Eα(τ) = 0, 2 ≤ α ≤ n.
Setting

P̄ =
P
√

K
, θ =

T
√

K
,

then ⟨P̄, P̄⟩2 = −1, ⟨θ, θ⟩2 = 1. Eqs (4.27) and (4.28) mean that

P̄ : M̃2 → H3
1 ⊂ R

4
1 = V1

is a spacelike surface. Eq (4.30) means that

θ : L→ Sn−2 ⊂ Rn−1

is a standard embedding and the sectional curvature of θ(L) is 1. Since dimL = n − 2, θ : L→ Sn−2 is a
standard isometric isomorphism. Since P + T = KY ,

Y =
1
√

K
(P̄, θ) : M̃2 × L→ H3

1 × S
n−2.

Denote P̄ = (u1, u2, u3, u4) ∈ H3
1, then

Y =
u1 − u4
√

K
(

u1

u1 − u4
,

u2

u1 − u4
,

u3

u1 − u4
,

u4

u1 − u4
,

θ

u1 − u4
).

Thus the spacelike hypersurface f : M̃2 × Sn−2 → Rn+1
1 is now given by

f = (
u2

u1 − u4
,

u3

u1 − u4
,

θ

u1 − u4
).

Note that
φ(u1, u2, u3, u4) = (

u2

u1 − u4
,

u3

u1 − u4
,

1
u1 − u4

)

is the inverse mapping of the local isometric correspondence ϕ : R3
1+ → H3

1 by (3.5). Thus,
the spacelike hypersurface f is conformally equivalent to the rotational hypersurface given by
Example 3.7. By Proposition 3.2, we finish the proof. □

Combining Propositions 4.3–4.5, we have the following theorem:

Theorem 4.3. Let f : Mn → Rn+1
1 (n ≥ 4) be a spacelike conformal Einstein hypersurface with

three distinct principal curvatures. Then, f is locally conformally equivalent to one of the following
examples:

1) a cylinder over a (λ, n)-surface in R3
1;

2) a cone over a (λ, n)-surface in S3
1;

3) a rotation hypersurface over a (λ, n)-surface in R3
1+.

Combining Theorems 4.1 and 4.3, we finish the proof of the main Theorem 1.2.
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