In this paper, we investigate a class of stochastic functional differential equations driven by the time-changed Lévy process. Using the Lyapunov technique, we obtain some sufficient conditions to ensure that the solutions of the considered equations are $ h $-stable in $ p $-th moment sense. Subsequently, using time-changed Itô formula and a proof by reduction ad absurdum, we capture some new criteria for the $ h $-stability in mean square of the considered equations. In the end, we analyze some illustrative examples to show the interest and usefulness of the major results.
Citation: Liping Xu, Zhi Li, Benchen Huang. $ h $-stability for stochastic functional differential equation driven by time-changed Lévy process[J]. AIMS Mathematics, 2023, 8(10): 22963-22983. doi: 10.3934/math.20231168
In this paper, we investigate a class of stochastic functional differential equations driven by the time-changed Lévy process. Using the Lyapunov technique, we obtain some sufficient conditions to ensure that the solutions of the considered equations are $ h $-stable in $ p $-th moment sense. Subsequently, using time-changed Itô formula and a proof by reduction ad absurdum, we capture some new criteria for the $ h $-stability in mean square of the considered equations. In the end, we analyze some illustrative examples to show the interest and usefulness of the major results.
[1] | T. Caraballo, M. Belfeki, L. Mchiri, M. Rhaima, $h$-stability in $p$th moment of neutral pantograph stochastic differential equations with Markovian switching driven by Lévy noise, Chaos Solitons Fract., 151 (2021), 111249. https://doi.org/10.1016/j.chaos.2021.111249 doi: 10.1016/j.chaos.2021.111249 |
[2] | L. Cheng, Y. Ren, L. Wang, Averaging principles for stochastic differential equations driven by time-changed Lévy noise, Acta Math. Sci., 40 (2020), 492–500. |
[3] | S. K. Choia, N. J. Kooa, D. M. Im, $h$-stability for linear dynamic equations on time scales, J. Math. Anal. Appl., 324 (2006), 707–720. https://doi.org/10.1016/j.jmaa.2005.12.046 doi: 10.1016/j.jmaa.2005.12.046 |
[4] | H. Damak, On uniform $h$-stability of non-autonomous evolution equations in Banach spaces, Bull. Malays. Math. Sci. Soc., 44 (2021), 4367–4381. https://doi.org/10.1007/s40840-021-01173-0 doi: 10.1007/s40840-021-01173-0 |
[5] | H. Damak, M. A. Hammami, A. Kicha, A converse theorem on practical $h$-stability of nonlinear systems, Mediterr. J. Math., 17 (2020), 88. https://doi.org/10.1007/s00009-020-01518-2 doi: 10.1007/s00009-020-01518-2 |
[6] | H. Damak, M. A. Hammami, A. Kicha, $h$-stability and boundedness results for solutions to certain nonlinear perturbed systems, Math. Appl., 10 (2021), 9–23. https://doi.org/10.13164/ma.2021.02 doi: 10.13164/ma.2021.02 |
[7] | C. S. Deng, W. Liu, Semi-implicit Euler-Maruyama method for non-linear time-changed stochastic differential equations, BIT Numer. Math., 60 (2020), 1133–1151. https://doi.org/10.1007/s10543-020-00810-7 doi: 10.1007/s10543-020-00810-7 |
[8] | B. Ghanmi, On the practical $h$-stability of nonlinear systems of differential equations, J. Dyn. Control Syst., 25 (2019), 691–713. https://doi.org/10.1007/s10883-019-09454-5 doi: 10.1007/s10883-019-09454-5 |
[9] | Y. Z. Hu, F. K. Wu, C. M. Huang, Stochastic stability of a class of unbounded delay neutral stochastic differential equations with general decay rate, Int. J. Syst. Sci., 43 (2010), 308–318. https://doi.org/10.1080/00207721.2010.495188 doi: 10.1080/00207721.2010.495188 |
[10] | S. Jin, K. Kobayashi, Strong approximation of stochastic differential equations driven by a time-changed Brownian motion with time-space-dependent coefficients, J. Math. Anal. Appl., 476 (2019), 619–636. https://doi.org/10.1016/j.jmaa.2019.04.001 doi: 10.1016/j.jmaa.2019.04.001 |
[11] | K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations, J. Theor. Probab., 24 (2011), 789–820. https://doi.org/10.1007/s10959-010-0320-9 doi: 10.1007/s10959-010-0320-9 |
[12] | Z. Li, Q. Y. Long, L. P. Xu, X. Wen, $h$-stability for stochastic Volterra-Levin equations, Chaos Solitons Fract., 164 (2022), 112698. https://doi.org/10.1016/j.chaos.2022.112698 doi: 10.1016/j.chaos.2022.112698 |
[13] | Z. Li, L. P. Xu, W. Ma, Global attracting sets and exponential stability of stochastic functional differential equations driven by the time-changed Brownian motion, Syst. Control Lett., 160 (2022), 105103. https://doi.org/10.1016/j.sysconle.2021.105103 doi: 10.1016/j.sysconle.2021.105103 |
[14] | W. Liu, X. R. Mao, J. W. Tang, Y. Wu, Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equations, Appl. Numer. Math., 153 (2020), 66–81. https://doi.org/10.1016/j.apnum.2020.02.007 doi: 10.1016/j.apnum.2020.02.007 |
[15] | M. Magdziarz, Path properties of subdiffusion-a martingale approach, Stoch. Models, 26 (2010), 256–271. https://doi.org/10.1080/15326341003756379 doi: 10.1080/15326341003756379 |
[16] | C. L. Mihiţ, On uniform $h$-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci., 1 (2016), 19–27. |
[17] | E. Nane, Y. N. Ni, Stability of the solution of stochastic differential equation driven by time-changed Lévy noise, Proc. Amer. Math. Soc., 145 (2017), 3085–3104. https://doi.org/10.1090/proc/13447 doi: 10.1090/proc/13447 |
[18] | E. Nane, Y. N. Ni, Path stability of stochastic differential equations driven by time-changed Lévy noises, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), 479–507. https://doi.org/10.30757/ALEA.v15-20 doi: 10.30757/ALEA.v15-20 |
[19] | G. J. Shen, W. T. Xu, J. L. Wu, An averaging principle for stochastic differential delay equations driven by time-changed Lévy noise, Acta Math. Sci., 42 (2022), 540–550. https://doi.org/10.1007/s10473-022-0208-7 doi: 10.1007/s10473-022-0208-7 |
[20] | S. Umarov, M. Hahn, K. Kobayashi, Beyond the triangle: Brownian motion, Ito calculus, and Fokker-Planck equation-fractional generalisations, World Scientific, 2018. https://doi.org/10.1142/10734 |
[21] | Q. Wu, Stability analysis for a class of nonlinear time-changed systems, Cogent Math., 3 (2016), 1228273. https://doi.org/10.1080/23311835.2016.1228273 doi: 10.1080/23311835.2016.1228273 |
[22] | Q. Wu, Stability of stochastic differential equations with respect to time-changed Brownian motions, arXiv, 2016. https://doi.org/10.48550/arXiv.1602.08160 |
[23] | F. K. Wu, S. G. Hu, C. M. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, Syst. Control Lett., 59 (2010), 195–202. https://doi.org/10.1016/j.sysconle.2010.01.004 doi: 10.1016/j.sysconle.2010.01.004 |
[24] | Y. Xu, M. Z. Liu, $H$-stability of linear $\theta$-method with general variable stepsize for system of pantograph equations with two delay terms, Appl. Math. Comput., 156 (2004), 817–829. https://doi.org/10.1016/j.amc.2003.06.008 doi: 10.1016/j.amc.2003.06.008 |
[25] | Y. Xu, J. J. Zhao, M. Z. Liu, $h$-stability of Runge-Kutta methods with variable stepsize for system of pantograph equations, J. Comput. Math., 22 (2004), 727–734. |
[26] | X. W. Yin, W. T. Xu, G. J. Shen, Stability of stochastic differential equations driven by the time-changed Lévy process with impulsive effects, Int. J. Syst. Sci., 52 (2021), 2338–2357. https://doi.org/10.1080/00207721.2021.1885763 doi: 10.1080/00207721.2021.1885763 |
[27] | X. Z. Zhang, C. G. Yuan, Razumikhin-type theorem on time-changed stochastic functional differential equations with Markovian switching, Open Math., 17 (2019), 689–699. https://doi.org/10.1515/math-2019-0055 doi: 10.1515/math-2019-0055 |
[28] | X. Z. Zhang, Z. S. Zhu, C. G. Yuan, Asymptotic stability of the time-changed stochastic delay differential equations with Markovian switching, Open Math., 19 (2021), 614–628. https://doi.org/10.1515/math-2021-0054 doi: 10.1515/math-2021-0054 |
[29] | M. Zhu, J. P. Li, D. Z. Liu, Exponential stability for time-changed stochastic differential equations, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 617–627. https://doi.org/10.1007/s10255-021-1031-y doi: 10.1007/s10255-021-1031-y |