Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Uncertain random problem for multistage switched systems

  • Optimal control problems for switched systems how best to switch between different subsystems. In this paper, two kinds of linear quadratic optimal control problems for multistage switched systems composing of both randomness and uncertainty are studied. Chance theory brings us a useful tool to deal with this indeterminacy. Based on chance theory and Bellman's principle, the analytical expressions are derived for calculating both the optimal control input and the optimal switching control law. Optimal control is implemented by genetic algorithm instead of enumerating all the elements of a series of sets whose size grows exponentially. Finally, the results of numerical examples are provided to illustrate the effectiveness of the proposed method.

    Citation: Guangyang Liu, Yang Chang, Hongyan Yan. Uncertain random problem for multistage switched systems[J]. AIMS Mathematics, 2023, 8(10): 22789-22807. doi: 10.3934/math.20231161

    Related Papers:

    [1] Yang Chang, Guangyang Liu, Hongyan Yan . Bang-bang control for uncertain random continuous-time switched systems. AIMS Mathematics, 2025, 10(1): 1645-1674. doi: 10.3934/math.2025076
    [2] Jiaojiao Li, Yingying Wang, Jianyu Zhang . Event-triggered sliding mode control for a class of uncertain switching systems. AIMS Mathematics, 2023, 8(12): 29424-29439. doi: 10.3934/math.20231506
    [3] Xiaodie Lv, Yi Liu, Yihua Zhong . A novel method to solve the optimization problem of uncertain network system based on uncertainty theory. AIMS Mathematics, 2023, 8(3): 5445-5461. doi: 10.3934/math.2023274
    [4] Zhimin Liu, Ripeng Huang, Songtao Shao . Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment. AIMS Mathematics, 2022, 7(7): 13292-13312. doi: 10.3934/math.2022734
    [5] Gengjiao Yang, Fei Hao, Lin Zhang, Lixin Gao . Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation. AIMS Mathematics, 2023, 8(6): 12708-12728. doi: 10.3934/math.2023640
    [6] Ling Rao . Portfolio selection based on uncertain fractional differential equation. AIMS Mathematics, 2022, 7(3): 4304-4314. doi: 10.3934/math.2022238
    [7] Lin Xu, Linlin Wang, Hao Wang, Liming Zhang . Optimal investment game for two regulated players with regime switching. AIMS Mathematics, 2024, 9(12): 34674-34704. doi: 10.3934/math.20241651
    [8] Xiang Wu, Yuzhou Hou, Kanjian Zhang . Optimal feedback control for a class of fed-batch fermentation processes using switched dynamical system approach. AIMS Mathematics, 2022, 7(5): 9206-9231. doi: 10.3934/math.2022510
    [9] Han Geng, Huasheng Zhang . A new H control method of switched nonlinear systems with persistent dwell time: H fuzzy control criterion with convergence rate constraints. AIMS Mathematics, 2024, 9(9): 26092-26113. doi: 10.3934/math.20241275
    [10] S. P. Arun, M. R. Irshad, R. Maya, Amer I. Al-Omari, Shokrya S. Alshqaq . Parameter estimation in the Farlie–Gumbel–Morgenstern bivariate Bilal distribution via multistage ranked set sampling. AIMS Mathematics, 2025, 10(2): 2083-2097. doi: 10.3934/math.2025098
  • Optimal control problems for switched systems how best to switch between different subsystems. In this paper, two kinds of linear quadratic optimal control problems for multistage switched systems composing of both randomness and uncertainty are studied. Chance theory brings us a useful tool to deal with this indeterminacy. Based on chance theory and Bellman's principle, the analytical expressions are derived for calculating both the optimal control input and the optimal switching control law. Optimal control is implemented by genetic algorithm instead of enumerating all the elements of a series of sets whose size grows exponentially. Finally, the results of numerical examples are provided to illustrate the effectiveness of the proposed method.



    Switched systems consist of several subsystems, where under some presumed conditions, only one of the subsystems is active at each switching time. Networked control systems with possible communication interruptions, automobile transmission systems and on/off heating systems are all typical examples of switched systems.

    A simple multistage switched system can be described as

    x(t+1)=Av(t)x(t)+Bv(t)u(t)tZ+

    where v(t) is the discrete switching control rule that determines the corresponding active subsystem at time tZ+, u(t) is the control input, and x(t) is the state.

    Unlike customary non-switched system optimal control issues, the challenge for optimal control problems of switching systems is to choose the switching control v(t) determines the switching sequence of the subsystems. In recent years, the problem has extensively studied [1,2,3,4,5,6,7]. For example, Zhu and Antsaklis [2] focusd on optimal control techniques for piecewise affine according to the type of switching, for the IFS problem. For the EFS problem, two-stage optimization, embedding transformation and switching LQR design methods are studied. Wu et al. [6] studied the optimal control problem of a switching system with input and state constraints. Yang et al. [7] concentrated on the sliding mode control problem for a set of discrete-time switched systems.

    So far, the research on optimal control problems for deterministic switched systems is the focus of most scholars. However, the complexity of the real world leads us to face various forms of indeterminacy. In many cases, two kinds of indeterminacy exist in the control system. One is characterized as randomness and implemented as stochastic noise[8,9,10,11,12]. For example, Liu et al. [11,12] solves the optimal control problem for a class of time-invariant stochastic switching systems with multiple switching times. The other is subjective which is modeled as uncertain noise[13,14,15,16], Jia et al. [15] studied finite-time synchronization (FTS) of uncertain fractional-order memristive neural networks (FMNNs) with leakage and discrete and Suriguga[16] studies the mean square exponential stability of higher order Markovian jump reaction-diffusion HNNs (RHNNs) with uncertain transition rates (GUTR) and time-varying delays. However, in practice, the system may be affected not only by randomness but also by uncertainty. To handle this system, Liu[17] introduced chance theory to model complicated including both randomness and uncertainty. After that, Liu[18] studied uncertain stochastic programming and proposed its mathematical properties, the concept of uncertain stochastic graphs and uncertain stochastic networks. Numerous academics have recently conducted substantial research in this field. In the chance space, Yu et al. [19] looked into uncertain random variables based on the possibility that uncertainty and randomness phenomena may occur simultaneously in some complex systems. Li et al.[20] applied uncertain random variables to security returns in financial markets, in the an uncertain stochastic portfolio selection issue with simultaneous stochastic and uncertain returns is presented. Based on the study of the significance of components in uncertain random dependability systems, Gao and Yao [21] have developed the notion of an importance index that is connected to this. Chen et al. [22] proposed the optimal equation to solve the dynamic optimization problems under uncertain stochastic continuous-time systems.

    Currently, the study of uncertainty optimal control models for switching systems is mostly separate from the study of random optimal control. However, uncertainty and randomness can exist simultaneously in reality. Uncertain random systems may be described by differential equations or difference equations are concerned with the dynamic uncertain random phenomena. The uncertain random phenomena occur in a variety of aspects, such as uncertain random programming [23,24] and uncertain random portfolio selection [25,26]. However, the optimal control of uncertain random switched systems has not been studied yet. Different from the separate indeterministic environment (stochastic or uncertain situation), this paper considers an optimal control problem for uncertain random switched systems. The dynamic systems are described by both the stochastic differential equation and uncertain differential equation. For the uncertain stochastic optimal control of switched systems, the goal of realizing the optimal control is to make the system realize the dynamic evolution in different stages according to the optimal logical relations under the constraints of uncertain random variables. For multistage uncertain random switched systems, two kinds of linear quadratic (LQ) optimal control problems are examined in this study. The first model is a LQ model where the disturbance is described by the sum of an uncertain variable and a random variable. The second model is also a LQ model but the disturbance is described by the product of an uncertain variable and a random variable. We derive the analytical expressions of these two models. The analytical expressions are derived characterizing by a sequence of sets with ordered pairs of matrices. The size of these sets grows exponentially. To overcome difficulty, we apply genetic algorithm to achieve the optimal control. Our paper contributes to the literature in the following way. First, an optimal control problem for uncertain random switched systems is introduced. Second, the recurrence equation for switched systems in uncertain random environments is given, and then the equation for the proposed model is obtained. Third, the analytical expressions of the optimal control and optimal values of two types of optimal control problems are obtained. At last, optimal control is implemented by genetic algorithm instead of enumerating all the elements of a series of sets whose size grows exponentially.

    The following describes how this paper is organized. In section 2, some fundamental concepts and theorems in chance theory are reviewed. In section 3, the expectation criteria is used to build an uncertain stochastic optimal control problem of multistage switched systems. In section 4, two kinds of LQ models are introduced and the analytical expressions of the optimal result are derived. In section 5, genetic algorithm and its implementation are presented. In section 6, three illustrative numerical examples are given. Finally, section 7 summarizes this paper.

    Liu [17] proposed chance theory to deal with the uncertain random phenomena.

    The triple (Γv,Lv,Mv)×(Ωr,Ar,Pr) = (Γv×Ωr,Lv×Ar,Mv×Pr) is known as a chance space[17,18], where (Γv,Lv,Mv) is an uncertainty space and (Ωr,Ar,Pr) is a probability space. Γv×Ωr, Lv×Ar, and Mv×Pr are the universal set, σ-algebra and product measure, respectively. Define an uncertain random variable ξvr in the chance space (Γv,Lv,Mv)×(Ωr,Ar,Pr) = (Γv×Ωr,Lv×Ar,Mv×Pr) with chance distribution

    Φ(z)=Ch{ξvrz}.

    The expected value of ξvr is defined by

    Ech[ξvr]=+0Ch{ξvrz}dz0Ch{ξvrz}dz

    provided that one of +0Ch{ξvrz}dz and 0Ch{ξvrz}dz is finite. The chance measure of ξvr is defined as

    Ch{ξvr}=10Pr{ωrΩrMv{γvΓv(γv,ωr)ξvr}z}dz.

    Theorem 2.1. (Liu[17]) For numbers A and B, we have

    Ech[Aξvr+B]=AEch[ξvr]+B,

    if ξvr is an uncertain random variable and its expected value exists.

    Theorem 2.2. (Liu[18]) ζ1,ζ2,,ζm are independent random variables whose probability distributions are Ψ1,Ψ2,,Ψm, η1,η2,,ηm are uncertain variables, and f is a measurable function. Then

    ξ=f(ζ1,ζ2,,ζm,η1,η2,...,ηm)

    has an expected value

    Ech(ξ)=Rm(z1,z2,...,zm,η1,η2,,ηm)dΨ1(z1)dΨ2(z2)×Ψm(zm),

    where Ech[f(z1,z2,,zm,η1,η2,,ηm)] is the expected value of the uncertain variable f(z1,z2,,zm,η1,η2,,ηm) for any real numbers z1,z2,,zm.

    Lemma 2.1. (Chen [27]) If the independent uncertain random variables ξvr1,ξvr2,,ξvrm whose expected values exist, it follows

    Ech[mt=1βtξvrt]=mt=1βtEch[ξvrt],βtR,t=1,2,...,m.

    Chance theory is effective at resolving problems when switched systems are perturbed by indeterminate factors which include both uncertainty and randomness. In this section, we will introduce uncertain random problems for multistage switched systems. The general form of the model can be written as follows:

    {J(x0,0)=minu(t)v(t)N0tτEch[τt=0fv(t)(x(t),u(t),t)]subject to:x(t+1)=ψv(t)(x(t),u(t),t)+σth(ξt,ηt,t),t=0,1,2,,τ1,x(0)=x0, (3.1)

    (i) where x(t)Rl, u(t)Rr are respectively the state vector and the control vector at stage t, for t{0,1,,τ}; (ii) v(t)\in {N}\triangleq \{1, \cdots, n\} denotes the switching control of the subsystem at stage t ; (iii) for each i \; \in N, \boldsymbol{\psi}_{i}, f_{i}: R^{l} \times R^{r} \times [0, \infty) \rightarrow R^{l} are vector-value functions, associated with the subsystem i , the system's first stage vector is denoted by \boldsymbol{x}(0) ; (iv) for each t \in \{0, 1, \cdots, \tau \} , \boldsymbol{\sigma}_{t}\neq 0 , {h} (\xi_{t}, \eta _{t}, t) is the disturbance, \xi_{1}, \xi_{2}, \cdots, \xi_{\tau } are random variables, \eta_{1}, \eta_{2}, \cdots, \eta_{\tau } are uncertain variables, they are independent of each other.

    It is worth noting that the switching signal v(\cdot) is viewed as an external input. Problem \ (3.1) of interest is to design jointly a continuous input \boldsymbol{u}(\cdot) and a discrete switching sequence v(\cdot) so as to optimize the performance.

    For 0\leq j \leq \tau , let J(\boldsymbol{x}_{j}, j) be the optimal reward obtained in [j, \tau] provided that at stage j , we are in state \boldsymbol{x}(j) = \boldsymbol{x}_{j} .

    Based on the dynamic approach, the recurrence formula can be found as follows:

    Theorem 3.1. For Problem \ (3.1) , we have

    \begin{equation} J(\boldsymbol{x}_{\tau }, \tau ) = \min\limits_{\substack{\boldsymbol{u}(\tau ), v(\tau )}}f(\boldsymbol{x}(\tau ), \boldsymbol{u}(\tau ), \tau ), \end{equation} (3.2)
    \begin{equation} J(\boldsymbol{x}_{j}, j) = \min\limits_{\substack{\boldsymbol{u}(t), v(t), \\ j\leq t\leq \tau -1}}E_{ch}[ f(\boldsymbol{x}(j), \boldsymbol{u}(j), j )+J(\boldsymbol{x}_{j+1}, j+1)]. \end{equation} (3.3)

    Reference [28] provides a reference for the proof of Theorem 3.1. According to Theorem 3.1, we should solve Eqs (3.2) and (3.3) sequentially from the final stage to the first stage or in reverse order in order to solve {Problem \ (3.1)} .

    The following uncertain stochastic optimal control problem, which has a linear quadratic objective function and is part of an uncertain random linear system, can be analytically solved by applying recurrence Eqs (3.2) and (3.3).

    \begin{equation} \left\{\begin{array}{l} J(\boldsymbol{x}_{0}, 0) = \min\limits_{\substack{\boldsymbol{u}(t), v(t), \\ 0\leq t\leq \tau -1}}E_{ch}[\boldsymbol{x}(\tau )^{T}\boldsymbol{Q}_{f}\boldsymbol{x}(\tau )+\sum\limits_{t = 0}^{\tau -1}( \boldsymbol{x}(t)^{T}\boldsymbol{Q}_{v(t)}\boldsymbol{x}(t)+ \boldsymbol{u}(t)^{T}\boldsymbol{R}_{v(t)}\boldsymbol{u}(t))]\\ \text{subject to:}\\ \boldsymbol{x}(t+1) = \boldsymbol{G}_{v(t)}\boldsymbol{x}(t)+\boldsymbol{F}_{v(t)}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ), \\ t = 0, 1, 2, \cdots, \tau -1, \\ \boldsymbol{x}(0) = \boldsymbol{x}_{0}, \end{array}\right. \end{equation} (4.1)

    where for any i\in N , \boldsymbol{Q}_{i}\geq 0 , \boldsymbol{R}_{i} > 0 , (\boldsymbol{G}_{i}, \boldsymbol{F}_{i}) and (\boldsymbol{Q}_{i}, \boldsymbol{R}_{i}) constitute the state constraints matrix pair and the cost matrix pair of the i -th subsystem, respectively. \boldsymbol{Q}_{f} > 0 is the terminal penalty matrix.

    We will discuss two cases of uncertain random variables {h} (\xi_{t}, \eta _{t}, t) : the sum \xi_{t} + \eta _{t} and the product \xi_{t} \cdot \eta_{t} .

    Now we consider Problem \ (4.1) when uncertain random variable {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}\times \eta _{t} . As in [29], define the following Riccati operator \rho _{i}(\boldsymbol{A}): S_{l}^{+} \rightarrow S_{l}^{+} for given i\in N and \boldsymbol{A}\in S_{l}^{+} ,

    \begin{equation} \rho _{i}(\boldsymbol{A}_{j}) \triangleq \boldsymbol{Q}_{i}+\boldsymbol{G}_{i}^{T}\boldsymbol{A}_{j}\boldsymbol{G}_{i} - \boldsymbol{G}_{i}^{T}\boldsymbol{A}_{j}\boldsymbol{F}_{i}(\boldsymbol{F}_{i}^{T}\boldsymbol{A}_{j}\boldsymbol{F}_{i}+\boldsymbol{R}_{i})^{-1}\boldsymbol{F}_{i}^{T}\boldsymbol{A}_{j}\boldsymbol{G}_{i}. \end{equation} (4.2)

    Let \{H_{i}\}_{i = 0}^{\tau } stand for the set of recursively defined ordered pairs of vectors:

    H_{0} = \{(\boldsymbol{Q}_{f}, 0)\}, H_{j+1} = \bigcup\limits_{(\boldsymbol{A}_{\tau -j}, \gamma_{\tau -j} )\in H_{j}}\Gamma_{j}(\boldsymbol{A}_{\tau -j}, \gamma_{\tau -j} ), \boldsymbol{A}_{\tau } = \boldsymbol{Q}_{f}, \gamma_{\tau } = 0,

    with

    \boldsymbol{\Gamma}_{j}(\boldsymbol{A}_{\tau -j}, \gamma_{\tau -j} ) = \bigcup\limits_{ i\in N}\{\rho_{i}(\boldsymbol{A}_{\tau -j}), (\gamma_{\tau -j} +\frac{1}{9} \boldsymbol{\sigma} _{\tau -j-1}^{T} \boldsymbol{A}_{\tau -j} \boldsymbol{\sigma} _{\tau -j-1})\}, (\boldsymbol{A}_{\tau -j}, \gamma_{\tau -j} )\in H_{j},

    for j = 0, 1, \cdots, \tau -1 .

    Assume that the following condition is true for each i\in N , j = 0, 1, \cdots, \tau -1 and A\geqslant 0 ,

    \begin{equation} \frac{1}{2}\left | \left ( \boldsymbol{G}_{i}(j)\boldsymbol{x}(j)+\boldsymbol{F}_{i}(j)\boldsymbol{u}(j)\right )^{T} \boldsymbol{A}_{j+1}\boldsymbol{\sigma} _{j} \right |\geq\boldsymbol{\sigma} _{j}^{T} \boldsymbol{A}_{j+1}\boldsymbol{\sigma} _{j}, \end{equation} (4.3)

    this means that at each stage j , the interference on each subsystem is relatively small.

    Theorem 4.1. Suppose {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}\times \eta _{t} , where \xi _{t}\sim \mathcal{U}(-1, 1) is a uniform random variable and \eta _{t}\sim \mathcal{L}(-1, 1) is a common linear uncertain variable, for t = 0, 1, 2, \cdots, \; \tau -1 . Then at stage j , for given \boldsymbol{x}_{j} , the optimal switching control of {Problem \ (4.1)} is

    \begin{equation*} \label{equ6} v^{*}(j) = \arg\min\limits_{\substack{v(j)\in N\\ (\boldsymbol{A}_{j+1}, \gamma_{j+1} )\in H_{\tau -j-1}}} \{{\boldsymbol{x}_{j}^{T} \rho _{v(j)}(\boldsymbol{A}_{j+1})\boldsymbol{x}_{j}}+\frac{1}{9}\boldsymbol{\sigma} _{j}^{T} {\boldsymbol{A}_{j+1}}\boldsymbol{\sigma} _{j}+\gamma_{j+1}\} \end{equation*}

    and the optimal continuous control

    \begin{equation*} \label{equ7} \boldsymbol{u}^{*}(j) = -(\boldsymbol{R}_{v^{*}(j)} + \boldsymbol{F}_{v^{*}(j)}^{T}\boldsymbol{A}^{*}_{j+1}\boldsymbol{F}_{v^{*}(j)})^{-1}\boldsymbol{F}_{v^{*}(j)}^{T}\boldsymbol{A}^{*}_{j+1}\boldsymbol{G}_{v^{*}(j)}\boldsymbol{x}_{j}, \end{equation*}

    where

    \begin{equation*} \label{equ8} (v^{*}(j), \boldsymbol{A}_{j}^{*}, \gamma_{j} ) = \arg\min\limits_{\substack{v(j)\in N\\ (\boldsymbol{A}_{j+1}, \gamma_{j+1} )\in H_{\tau -j-1}}} \{{ \boldsymbol{x}_{j}^{T}\rho _{v(j)}(\boldsymbol{A}_{j+1})\boldsymbol{x}_{j}}+\frac{1}{9} \boldsymbol{\sigma} _{j}^{T} \boldsymbol{A}_{j+1}\boldsymbol{\sigma}_{j}+\gamma_{j+1}\}. \end{equation*}

    The optimal value of {Problem \ (4.1)} is

    \begin{equation*} \label{equ9} J(\boldsymbol{x}_{0}, 0) = \min\limits_{\substack{(\boldsymbol{A}_{0}, \gamma_{0} )\in H_{\tau }}}[\boldsymbol{x}_{0}^{T} \boldsymbol{A}_{0}\boldsymbol{x}_{0}+\gamma_{0} ]. \end{equation*}

    Proof. It can be proved by induction.

    We will derive the analytical solution of {Problem \ (4.1)} . First, we have

    J(\boldsymbol{x}_{\tau }, \tau ) = \boldsymbol{x}(\tau )^{T }\boldsymbol{Q}_{f}\boldsymbol{x}(\tau ) = \min\limits_{\substack(\boldsymbol{A}_{\tau }, \gamma_{\tau } )\in H_{0}}(\boldsymbol{x}(\tau )^{T}\boldsymbol{A}_{\tau }\boldsymbol{x}(\tau )+\gamma_{\tau } ).

    For j = \tau -1 , the following equation holds by Theorem 3.1,

    \begin{align*} J(\boldsymbol{x}_{\tau -1}, \tau -1)& = \min\limits_{\substack{\boldsymbol{u}(\tau -1), v(\tau -1)}}E_{ch}\left[\boldsymbol{x}(\tau -1)^{T}\boldsymbol{Q}_{v(\tau -1)}\boldsymbol{x}(\tau -1)+\boldsymbol{u}(\tau -1)^{T }\boldsymbol{R}_{v(\tau -1)}\boldsymbol{u}(\tau -1)+J(\boldsymbol{x}_{\tau }, \tau )\right]\nonumber\\ & = \min\limits_{\substack{\boldsymbol{u}(\tau -1), v(\tau -1)}} \left \{\boldsymbol{x}(\tau -1)^{T}\boldsymbol{Q}_{v(\tau -1)}\boldsymbol{x}(\tau -1)+\boldsymbol{u}(\tau -1)^{T}\boldsymbol{R}_{v(\tau -1)}\boldsymbol{u}(\tau -1) \right.\nonumber\\ & \left.+E_{ch}[( \boldsymbol{G}_{v(\tau -1)}\boldsymbol{x}(\tau -1)+\boldsymbol{F}_{v(\tau -1)}\boldsymbol{u}(\tau -1) +\boldsymbol{\sigma} _{\tau -1}{h} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 ) )^{T}\boldsymbol{Q}_{f}\right.\nonumber\\ & \left. ( \boldsymbol{G}_{v(\tau -1)}\boldsymbol{x}(\tau -1)+\boldsymbol{F}_{v(\tau -1)}\boldsymbol{u}(\tau -1)+\boldsymbol{\sigma} _{\tau -1}{h} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 ) ) ]\right \}\nonumber\\ & = \min\limits_{\substack{\boldsymbol{u}(\tau -1), v(\tau -1)}} \left \{\boldsymbol{x}(\tau -1)^{T}({\boldsymbol{Q}_{v(\tau -1)}+\boldsymbol{G}_{v\left ( \tau -1 \right )}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v\left ( \tau -1 \right )}})\boldsymbol{x}(\tau -1)+ \boldsymbol{u}(\tau -1)^{T}({\boldsymbol{R}_{v(\tau -1)}} \right.\nonumber\\ & \left.\boldsymbol+{F}_{v \left ( \tau -1 \right )}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v\left ( \tau -1 \right )})\boldsymbol{u}(\tau -1)+2\boldsymbol{u}(\tau -1)^{T}\boldsymbol{F}_{v\left ( \tau -1 \right )}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v\left ( \tau -1 \right )}\boldsymbol{x}(\tau -1)\right.\nonumber\\ & \left.+E_{ch}[2(\boldsymbol{G}_{v(\tau -1)}\boldsymbol{x}(\tau -1)+\boldsymbol{F}_{v(\tau -1)}\boldsymbol{u}(\tau -1) )^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}{h} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 )\right.\nonumber\\ & \left.+\boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}{h}^{2} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 ) ]\right \}. \end{align*}

    Denote \boldsymbol{a}_{\tau -1} = 2\left (\boldsymbol{G}_{v\left (\tau -1 \right)} \boldsymbol{x}(\tau -1)+\boldsymbol{F}_{v(\tau -1)}\boldsymbol{u}(\tau -1)\right)^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1} , \boldsymbol{b}_{\tau -1} = \boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1} . Suppose {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}\times \eta _{t} , where \xi _{t}\sim \mathcal U(-1, 1) is a uniform random variable and \eta _{t}\sim \mathcal L(-1, 1) is a common linear uncertain variable, for t = 0, 1, \cdots, \tau -1, we have

    \begin{align} &E_{ch}\left [ a_{\tau -1}{h} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 ) +b_{\tau -1}{h}^{2} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 )\right ]\\& = E_{ch}\left [ a_{\tau -1}(\xi_{\tau -1}\eta _{\tau -1}) +b_{\tau -1}\left ( \xi_{\tau -1}\eta _{\tau -1} \right )^{2}\right ]\\& = \int_{-1}^{1}E_{ch} \left [ a_{\tau -1}(z_{\tau -1}\eta _{\tau -1}) +b_{\tau -1}\left ( z_{\tau -1}\eta _{\tau -1} \right )^{2} \right ]d\Psi _{\tau -1}(z_{\tau -1})\\& = \int_{-1}^{1}E_{ch} \left [ b_{\tau -1}z_{\tau -1}^{2}\left (\frac{a_{\tau -1}}{b_{\tau -1}z_{\tau -1}}\eta _{\tau -1} +\eta _{\tau -1}^{2} \right ) \right ]d\Psi _{\tau -1}(z_{\tau -1}). \end{align} (4.4)

    Because \frac{a_{\tau -1}}{b_{\tau -1}z_{\tau -1}}\eta _{\tau -1} +\eta _{\tau -1}^{2} is an uncertain variable, according to [30], we have

    \begin{align*} &E_{ch}\left [ a_{\tau -1}{h} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 ) +b_{\tau -1}{h}^{2} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 )\right ]\nonumber\\& = \int_{-1}^{1} \left [ b_{\tau -1}z_{\tau -1}^{2}E_{ch}\left (\frac{a_{\tau -1}}{b_{\tau -1}z_{\tau -1}}\eta _{\tau -1} +\eta _{\tau -1}^{2} \right ) \right ]d\Psi _{\tau -1}(z_{\tau -1}). \end{align*}

    For z_{(\tau -1)}\in (-1, 1) , with condition (4.3), we know that \left | \frac{a_{\tau -1}}{b_{\tau -1}z_{\tau -1}}\right |\geqslant 4 . According to Example 2 in [31], we can get E_{ch} \left [\frac{a_{\tau -1}}{b_{\tau -1}z_{\tau -1}}\eta _{\tau -1} +\eta _{\tau -1}^{2} \right] = \frac{1}{3} . Thus

    \begin{align} E_{ch}\left [ a_{\tau -1}{h} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 ) +b_{\tau -1}{h}^{2} (\xi_{\tau -1}, \eta _{\tau -1}, \tau -1 )\right ]& = \frac{1}{3}b_{\tau -1}\int_{-1}^{1}z_{\tau -1}^{2}d\Psi _{\tau -1}(z_{\tau -1})\\ & = \frac{1}{9}b_{\tau -1}\\& = \frac{1}{9}\boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}. \end{align} (4.5)

    Substituting (4.5) into (4.4) yields

    \begin{align} J(\boldsymbol{x}_{\tau -1}, \tau -1)& = \min\limits_{\substack{u(\tau -1), v(\tau -1)}} \left \{\boldsymbol x(\tau -1)^{T}({\boldsymbol{Q}_{v(\tau -1)}+\boldsymbol{G}_{v\left ( \tau -1 \right )}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v\left ( \tau -1 \right )}}) \boldsymbol{x}(\tau -1)+ \boldsymbol{u}(\tau -1)^{T} ({\boldsymbol{R}_{v(\tau -1)}} \right.\\ &+ \left.\boldsymbol{F}_{v \left ( \tau -1 \right )}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v\left ( \tau -1 \right )})\boldsymbol{u}(\tau -1)+2\boldsymbol{u}(\tau -1)^{T}\boldsymbol{F}_{v\left ( \tau -1 \right )}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v\left ( \tau -1 \right )}\boldsymbol{x}(\tau -1) +\frac{1}{9}\boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}\right \}\\ & = \min\limits_{\substack{u(\tau -1), v(\tau -1)}}f(\boldsymbol{u}(\tau -1), v(\tau -1)). \end{align} (4.6)

    The optimal control u^{*}(\tau -1) satisfies

    \begin{align} \frac{\partial f}{\partial \boldsymbol{u}(\tau -1)} = 2(\boldsymbol{R}_{v^{*}(\tau -1)}+\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v^{*}(\tau -1)})\boldsymbol{u}^{*}(\tau -1)+2\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v^{*}(\tau -1)}\boldsymbol{x}(\tau -1) = 0. \end{align} (4.7)

    Since

    \begin{align*} \frac{\partial ^{2}f}{\partial \boldsymbol{u}^{2}(\tau -1)} = 2(\boldsymbol{R}_{v^{*}(\tau -1)}+\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v^{*}(\tau -1)}) > 0, \end{align*}

    we have

    \begin{align} \boldsymbol{u}^{*}(\tau -1)& = -(\boldsymbol{R}_{v^{*}(\tau -1)}+\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v^{*}(\tau -1)})^{-1}\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v^{*}(\tau -1)}\boldsymbol{x}(\tau -1). \end{align} (4.8)

    Substituting (4.8) into (4.6), we get

    \begin{align} J(\boldsymbol{x}_{\tau -1}, \tau -1)& = \min\limits_{\substack{v(\tau -1)}} \left \{ \boldsymbol{x}(\tau -1)^{T}[\boldsymbol{Q}_{v(\tau -1)}+\boldsymbol{G}_{v(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v(\tau -1)}-\boldsymbol{G}_{v(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v(\tau -1)}(\boldsymbol{R}_{v^{*}(\tau -1)}\right.\\ & \left.+\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{F}_{v^{*}(\tau -1)})^{-1}\boldsymbol{F}_{v^{*}(\tau -1)}^{T}\boldsymbol{Q}_{f}\boldsymbol{G}_{v^{*}(\tau -1)}]\boldsymbol{x}(\tau -1)+\frac{1}{9}\boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}\right \}. \end{align} (4.9)

    According to the definition of \rho _{i}(\boldsymbol{A}) and H_{j} , Eq.(4.9) can be written as

    \begin{align*} J(\boldsymbol{x}_{\tau -1}, \tau -1)& = \min\limits_{\substack{v(\tau -1)}}[{ \boldsymbol{x}_{\tau -1}^{T}\rho _{v(\tau -1)}(\boldsymbol{Q}_{f})\boldsymbol{x}_{\tau -1}}+\frac{1}{9}\boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}+\gamma_{\tau }]\nonumber\\ & = \min\limits_{\substack{(\boldsymbol{A}_{\tau -1}, \gamma_{\tau -1} )\in H_{1}}}[\boldsymbol{x}_{\tau -1}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{x}_{\tau -1}+\gamma_{\tau -1} ]. \end{align*}

    Moreover, we have

    \begin{align*} v^{*}(\tau -1) = \arg\min\limits_{(\boldsymbol{A}_{\tau }, \gamma_{\tau } )\in H_{0}} \{{ \boldsymbol{x}_{\tau -1}^{T} \rho _{v(\tau -1)}(\boldsymbol{A}_{\tau })}\boldsymbol{x}_{\tau -1}+\frac{1}{9}\boldsymbol{\sigma} _{\tau -1}^{T}\boldsymbol{Q}_{f}\boldsymbol{\sigma} _{\tau -1}+\gamma_{\tau } ]\}. \end{align*}

    For j = \tau -2 , we have

    \begin{align*} \label{al6} J(\boldsymbol{x}_{\tau -2}, \tau -2)& = \min\limits_{\substack{u(\tau -2), v(\tau -2)}}E_{ch}\left[\boldsymbol{x}(\tau -2)^{T}\boldsymbol{Q}_{v(\tau -2)}\boldsymbol{x}(\tau -2)+\boldsymbol{u}(\tau -2)^{T}\boldsymbol{R}_{v(\tau -2)}\boldsymbol{u}(\tau -2)+ J(\boldsymbol{x}_{\tau -1}, \tau -1)\right]\nonumber\\ & = \min\limits_{\substack{u(\tau -2), v(\tau -2)\\(\boldsymbol{A}_{\tau -1}, \gamma_{\tau -1} )\in H_{1}}} \left \{\boldsymbol{x}(\tau -1)^{T}\boldsymbol{Q}_{v(\tau -1)}\boldsymbol{x}(\tau -1)+\boldsymbol{u}(\tau -1)^{T}\boldsymbol{R}_{v(\tau -1)}\boldsymbol{u}(\tau -1)\right.\nonumber\\ &+ \left.E_{ch}[ (\boldsymbol{G}_{v(\tau -2)}\boldsymbol{x}(\tau -2)+\boldsymbol{F}_{v(\tau -2)}\boldsymbol{u}(\tau -2)+\boldsymbol{\sigma} _{\tau -2}{h} (\xi_{\tau -2}, \eta _{\tau -2}, \tau -2 )\right )^{T}\boldsymbol{A}_{\tau -1}\left ( \boldsymbol{G}_{v(\tau -2)}\right.\nonumber\\ &\times \left.\boldsymbol{x}(\tau -2)+\boldsymbol{F}_{v(\tau -2)}\boldsymbol{u}(\tau -2)+\boldsymbol{\sigma} _{\tau -2}{h} (\xi_{\tau -2}, \eta _{\tau -2}, \tau -2 ) ) ]+\gamma_{\tau -1}\right \}\nonumber\\ & = \min\limits_{\substack{u(\tau -1), v(\tau -1)\\ (\boldsymbol{A}_{\tau -1}, \gamma_{\tau -1} )\in H_{1}}} \left \{ \boldsymbol{x}(\tau -2)^{T}({\boldsymbol{Q}_{v(\tau -2)}+\boldsymbol{G}_{v\left ( \tau -2 \right )}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{G}_{v\left ( \tau -2 \right )}}) \boldsymbol{x}(\tau -2)+ \boldsymbol{u}(\tau -2)^{T} ({\boldsymbol{R}_{v(\tau -2)}}\right.\nonumber\\ & \left.+\boldsymbol{F}_{v \left ( \tau -2 \right )}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{F}_{v\left ( \tau -2 \right )})\boldsymbol{u}(\tau -2) +2\boldsymbol{u}(\tau -2)^{T}\boldsymbol{F}_{v\left ( \tau -2 \right )}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{G}_{v\left ( \tau -2 \right )}\boldsymbol{x}(\tau -2)\right.\nonumber\\ &+ \left.E_{ch}[2 ( \boldsymbol{G}_{v(\tau -2)}\boldsymbol{x}(\tau -2) +\boldsymbol{F}_{v(\tau -2)}\boldsymbol{u}(\tau -2) )^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{\sigma} _{\tau -2}{h} (\xi_{\tau -2}, \eta _{\tau -2}, \tau -2 )\right.\nonumber\\ &+ \left.\boldsymbol{\sigma} _{\tau -2}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{\sigma} _{\tau -2}{h}^{2} (\xi_{\tau -2}, \eta _{\tau -2}, \tau -2 ) ]+\gamma_{\tau -1}\right \}. \end{align*}

    From a calculation similar to (4.5), it can be seen that

    \begin{align} &E_{ch}[2\left ( \boldsymbol{G}_{v(\tau -2)}\boldsymbol{x}(\tau -1)+\boldsymbol{F}_{v(\tau -2)}\boldsymbol{u}(\tau -2)\right )^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{\sigma} _{\tau -2}{h} (\xi_{\tau -2}, \eta _{\tau -2}, \tau -2 )\\& + \boldsymbol{\sigma} _{\tau -2}^{T} \boldsymbol{A}_{\tau -1}\boldsymbol{\sigma} _{\tau -2}{h}^{2} (\xi_{\tau -2}, \eta _{\tau -2}, \tau -2 ) ]\\& = \frac{1}{9} \boldsymbol{\sigma} _{\tau -2}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{\sigma} _{\tau -2}. \end{align} (4.10)

    By a similar process as above, we can obtain

    \begin{align*} \boldsymbol{u}^{*}(\tau -2) = -(\boldsymbol{R}_{v^{*}(\tau -2)}+\boldsymbol{F}_{v^{*}(\tau -2)}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{F}_{v^{*}(\tau -2)})^{-1}\boldsymbol{F}_{v^{*}(\tau -2)}^{T}\boldsymbol{A}_{\tau -1}\boldsymbol{G}_{v^{*}(\tau -2)}\boldsymbol{x}_{\tau -2}. \end{align*}
    \begin{align*} J(\boldsymbol{x}_{\tau -2}, \tau -2) & = \min\limits_{\substack{v(\tau -2)\\(\boldsymbol{A}_{\tau -1}, \gamma_{\tau -1} )\in H_{1}}}[{ \boldsymbol{x}_{\tau -2}^{T} \rho _{v(\tau -2)}(\boldsymbol{A})\boldsymbol{x}_{\tau -2}}+\frac{1}{9}\boldsymbol{\sigma} _{\tau -2}^{T} \boldsymbol{A}_{\tau -1}\boldsymbol{\sigma} _{\tau -2}+\gamma_{\tau -1}]\nonumber\\ & = \min\limits_{\substack{(\boldsymbol{A}_{\tau -2}, \gamma_{\tau -2} )\in H_{2}}}[ \boldsymbol{x}_{\tau -2}^{T} \boldsymbol{A}_{\tau -2} \boldsymbol{x}_{\tau -2}+\gamma_{\tau -2} ] \end{align*}

    and

    \begin{align*} v^{*}(\tau -2) = \arg\min\limits_{\substack{v(\tau -2)\\ (\boldsymbol{A}_{\tau -1}, \gamma_{\tau -1} )\in H_{1}}} \{{\boldsymbol{x}_{\tau -2}^{T} \rho _{v(\tau -2)}(\boldsymbol{A}_{\tau -1})\boldsymbol{x}_{\tau -2}}+\frac{1}{9} \boldsymbol{\sigma} _{\tau -2}^{T} \boldsymbol{A}_{\tau -1} \boldsymbol{\sigma} _{\tau -2}+\gamma_{\tau -1} ]\}. \end{align*}

    By induction, Theorem 4.1 can be proved.

    In this section, LQ model with uncertain random variable {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}\times\eta _{t} is derived in details. The optimal switching control and continuous control of Problem \ (4.1) in the {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}+ \eta _{t} case still needs to be derived, we will argue in the next section.

    Theorem 4.2. Suppose {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}+ \eta _{t} , where \xi _{t}\sim \mathcal{U}(-1, 1) is a uniform random variable and \eta _{t}\sim \mathcal{L}(-1, 1) is a common linear uncertain variable, for t = 0, 1, 2, \cdots, \tau -1 . Then at stage j , for given x_{j} , the optimal switching control of {Problem \ (4.1)} is

    \begin{equation*} \label{equ10} v^{*}(j) = \arg\min\limits_{\substack{v(j)\in N\\ (\boldsymbol{A}_{j+1}, \gamma_{j+1} )\in H_{\tau-j-1}}} \{{\boldsymbol{x}_{j}^{T} \rho _{v(j)}(\boldsymbol{A}_{j+1})\boldsymbol{x}_{j}}+\frac{2}{3}\boldsymbol{\sigma} _{j+1}^{T} {\boldsymbol{A}_{j+1}}\boldsymbol{\sigma} _{j+1}+\gamma_{j+1}\} \end{equation*}

    and the optimal continuous control

    \begin{equation*} \label{equ11} \boldsymbol{u}^{*}(j) = -(\boldsymbol{R}_{v^{*}(j)}+\boldsymbol{F}_{v^{*}(j)}^{T}\boldsymbol{A}_{j+1}\boldsymbol{F}_{v^{*}(j)})^{-1}\boldsymbol{F}_{v^{*}(j)}^{T}\boldsymbol{A}_{j+1}\boldsymbol{G}_{v^{*}(j)}\boldsymbol{x}_{j}, \end{equation*}

    where

    \begin{align*} (v^{*}(j), \boldsymbol{A}^{*}_{j} , \gamma_{j} ) = \arg\min\limits_{\substack{v(j)\in N\\ (\boldsymbol{A}_{j+1}, \gamma_{j+1} )\in H_{\tau-j-1}}} \{{ \boldsymbol{x}_{j}^{T}\rho _{v(j)}(\boldsymbol{A}_{j+1})\boldsymbol{x}_{j}}+\frac{2}{3} \boldsymbol{\sigma} _{j+1}^{T} \boldsymbol{A}_{j+1}\boldsymbol{x}_{j}+\gamma_{j+1}\}. \end{align*}

    The optimal value of {Problem \ (4.1)} is

    \begin{equation*} J(\boldsymbol{x}_{0}, 0) = \min\limits_{\substack{(\boldsymbol{A}_{0}, \gamma_{0} )\in H_{\tau}}}[\boldsymbol{x}_{0}^{T} \boldsymbol{A}_{0}\boldsymbol{x}_{0}+\gamma_{0} ]. \end{equation*}

    Proof. If {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}+ \eta _{t} , for t = 0, 1, 2, \cdots, \tau -1 . The conclusions may be not the same as Theorem 4.1.

    At stage j , denote \boldsymbol{a}_{j} = 2\left (\boldsymbol{G}_{v\left (j \right)} \boldsymbol{x}_{j}+\boldsymbol{F}_{v(j)}\boldsymbol{u}(j)\right)^{T}\boldsymbol{A}_{j+1}\boldsymbol{\sigma} _{j} , \boldsymbol{b}_{j} = \boldsymbol{\sigma} _{j}^{T}\boldsymbol{A}_{j+1}\boldsymbol{\sigma} _{j} . We have

    \begin{align*} &E_{ch}\left [ a_{j}h(\xi_{j-1}, \eta _{j-1}, j-1 ) +b_{j}{h}^{2} (\xi_{j-1}, \eta _{j-1}, j-1 )\right ]\nonumber\\& = E_{ch}\left [ a_{j}(\xi _{j}+\eta _{j}) +b_{j}\left ( \xi _{j}+\eta _{j} \right )^{2}\right ]\nonumber\\ & = \int_{-1}^{1}E_{ch} \left [ a_{j}(z_{j}+\eta _{j}) +b_{j}\left ( z_{j}+\eta _{j} \right )^{2} \right ]d\Psi _{j}(z_{j}). \end{align*}

    By using Theorem 2.2, we have

    \begin{align*} &E_{ch}\left [ a_{j}h(\xi_{j-1}, \eta _{j-1}, j-1 ) +b_{j}{h}^{2} (\xi_{j-1}, \eta _{j-1}, j-1 )\right ]\nonumber\\ & = \int_{-1}^{1} b_{j}E_{ch}[( \frac{a_{j}}{b_{j}}(z _{j}+\eta _{j})+z_{j}^{2}+\eta _{j} ^{2}+2z_{j}\eta _{j})]d\Psi _{j}(z_{j})\nonumber\\ & = \int_{-1}^{1} b_{j}( \frac{a_{j}}{b_{j}}z _{j}+z_{j}^{2})+b_{j}E_{ch}[(\frac{a_{j}}{b_{j}}+2z_{j})\eta _{j}+\eta _{j}^{2}]d\Psi _{j}(z_{j})\nonumber\\ & = \frac{1}{3}b_{j}+b_{j}\int_{-1}^{1} E_{ch}[( \frac{a_{j}}{b_{j}}+2z_{j})\eta _{j}+\eta _{j}^{2}]d\Psi _{j}(z_{j}). \end{align*}

    For z_{(j)}\in (-1, 1), we know that \left | \frac{a_{j}}{b_{j}}+2z_{j}\right |\geqslant 2 . According to Example 2 in [31], we can get E_{ch} \left [(\frac{a_{j}}{b_{j}}+2z_{j})\eta _{j} +\eta _{j}^{2} \right] = \frac{1}{3} . Thus

    \begin{align*} \label{a21} &E_{ch}\left [ a_{j}h(\xi_{j-1}, \eta _{j-1}, j-1 ) +b_{j}{h}^{2} (\xi_{j-1}, \eta _{j-1}, j-1 )\right ]\nonumber\\ & = \frac{1}{3}b_{j}+b_{j}\int_{-1}^{1} E_{ch}[( \frac{a_{j}}{b_{j}}+2z_{j})\eta _{j}+\eta _{j}^{2}]\Psi _{j}(z_{j})\nonumber\\ & = \frac{2}{3}b_{j}\nonumber\\& = \frac{2}{3} \boldsymbol{\sigma} _{j}^{T} \boldsymbol{A}_{j+1}\boldsymbol{\sigma} _{j}. \end{align*}

    Then by the similar process to the proof of Theorem 4.1, the theorem can be proved.

    According to Theorem 4.1 and Theorem 4.2, we can obtain the analytical expressions of optimal control input and the optimal switching law by finding all the elements in the H_{j} \; (j = \tau, \tau -1, \cdots, 0) .

    The cardinality of H_{j} is n^{j} which grows exponentially with respect to j . When the number of subsystems n and stages \tau of the uncertain system is small, we can adapt the enumeration algorithm. However, when the number of subsystems and stages becomes big, the enumeration method is no longer applicable. Genetic algorithm is an effective method that can be used to find optimal switching control and optimal continuous control and may be a good choice to implement efficiently.

    Genetic algorithm [32] is one of the artificial intelligence exhaustive searching techniques that is inspired by the natural selection. The basic idea of the genetic algorithm approach is to encode the solutions of the problem as chromosomes or individuals and each chromosome is estimated by calculating its fitness. For model (4.1), we hope to find the optimal switching sequences v(j)|_{j = 0}^{\tau -1} = (v(0), \cdots, v(\tau -1)) , so they are presented as chromosomes. The optimal value J(\boldsymbol{x}_{0}, 0) for model (4.1) is chosen as the fitness of the chromosome. Chromosomes with high fitness have a higher probability to be selected. The chromosomes for the next generation are reproduced and formal through "crossover" and "mutation" processes. Single crossover strategy is used in this paper, the genes of two parents solutions are swapped before and after a single point. Cells are chosen to be "mutated" randomly through the mutation process. If selected, the value of this gene is displaced by another random subsystem which does not appear in this chromosome. The steps of our proposed genetic algorithm can now be described as follows.

    Parameters for genetic algorithm: pop\_size , c , m , stopping criterion.

    (1) Generate initial population including pop\_size random chromosome, each individual is presented as switching law v(j)|_{j = 0}^{\tau -1} .

    (2) Calculate the fitness J(\boldsymbol{x}_{0}, 0) of each individual.

    (3) Use the roulette wheel method to create the mating pool from the current individual.

    (4) Selection of two parents for crossover based on crossover rate c .

    (5) Application of the single crossover approach to the random mating of these chosen individuals.

    (6) The external mutation approach is used to choose individuals from the mating pool for breakthrough depending on mutation rate m .

    (7) After repeated execution steps 2–6, once the termination condition is reached, the best individual is selected as the result of the optimal control v^{*}(j)|_{j = 0}^{\tau -1} .

    In this section, given the initial \boldsymbol{G}_{i}, \boldsymbol{F}_{i}, \boldsymbol{Q}_{i}, \boldsymbol{R}_{i} , genetic algorithm is applied to solve some problems, which proves that the content of our previous argument can be realized.

    Example 6.1. Consider the uncertain discrete-time optimal control {Problem \ (4.1)} with \tau = 5 , n = 3 , \boldsymbol{x}(0) = (2, 1)^{T} , \xi _{t}\sim\mathcal{U}(-1, 1) , \eta_{t}\sim\mathcal{L}(-1, 1) , {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}\times \eta _{t} and

    \boldsymbol{G}_{1} = \begin{bmatrix} 1&2 \\ 0 & 1 \end{bmatrix}, \; \boldsymbol{G}_{2} = \begin{bmatrix} 1&2 \\ 2& 1 \end{bmatrix}, \; \boldsymbol{G}_{3} = \begin{bmatrix} 1&2 \\ 2 & 0 \end{bmatrix}, \; \boldsymbol{\sigma} = \begin{pmatrix} 0.01\\ 0.01 \end{pmatrix},
    \begin{pmatrix}\boldsymbol{F}_{1}\end{pmatrix} = \begin{pmatrix} 1\\ 1 \end{pmatrix}, \; \begin{pmatrix}\boldsymbol{F}_{2}\end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}, \; \begin{pmatrix} \boldsymbol{F}_{3}\end{pmatrix} = \begin{pmatrix} 2\\ 1 \end{pmatrix}. \;
    \boldsymbol{Q}_{1} = \boldsymbol{Q}_{2} = \boldsymbol{Q}_{3} = \begin{bmatrix} 1&0 \\ 0 & 1 \end{bmatrix}, \;\boldsymbol{Q}_{f} = \begin{bmatrix} 4&1 \\ 1 & 2 \end{bmatrix}, \;R_{1} = R_{2} = R_{3} = 1. \;

    Assume that \boldsymbol{x}(0) = (2, 1)^{T} is the initial state. Then the optimal switching control v^{*}(j) and optimal objective values J(\boldsymbol{x}_{j}, j) of {Problem \ (4.1)} are got by enumeration method and genetic algorithm respectively. The optimal results using the enumeration method are reflected in Table 1, and the results we get using the genetic algorithm are shown in Table 2. By comparison, we find that the difference between the final optimal switched controls and the optimal values is tiny in numerical terms, the genetic algorithm can therefore be used to implement the optimal control for {Problem \ (4.1)} . The more complex examples will be challenged.

    Table 1.  The optimal results using the enumeration method.
    j v^{*}(j) \boldsymbol{x}(j) J(\boldsymbol{x}_{j}, j)
    0 1 (2, 1) 14.9094
    1 1 (1.3911, -0.2179) 2.9103
    2 1 (0.2271, 0.1989) 0.1240
    3 1 (0.0526, -0.1066) 0.0342
    4 1 (-0.0403, 0.0137) 0.0058

     | Show Table
    DownLoad: CSV
    Table 2.  The optimal results using the genetic algorithm.
    j v^{*}(j) \boldsymbol{x}(j) J(\boldsymbol{x}_{j}, j)
    0 1 (2, 1) 14.8680
    1 2 (1.3911, -0.2179) 3.7750
    2 2 (0.2271, 0.1989) 0.2530
    3 1 (0.0526, -0.1066) 0.0500
    4 1 (-0.0403, 0.0137) 0.0011

     | Show Table
    DownLoad: CSV

    Example 6.2. In this example, we consider the uncertain discrete-time optimal control {Problem \ (4.1)} comprised of five subsystems, ten stages.

    Subsystem 1:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&5 \\ 1& 1 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 1\\ 1 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 2:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 1&1 \\ 2& 1 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 3\\ 2 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 3:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&1 \\ 1&2 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 4\\ 1 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 4:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&2 \\ 1&3 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 2\\ 2 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 5:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&3 \\ 3&1 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 2\\ 3 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    In this example, we let \boldsymbol{x}(0) = (2, 1)^{T} , \tau = 10 , {h} (\xi_{t}, \eta _{t}, t) = \xi _{t}\times \eta _{t} , \xi _{t}\sim\mathcal{U}(0, 1) , \eta_{t}\sim\mathcal{L}(0, 1) , R_{t} = 1 , \boldsymbol{Q}_{t} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , (t = 1, 2, 3, 4, 5) , \boldsymbol{Q}_{f} = \begin{bmatrix} 8 & 3 \\ 3 & 2 \end{bmatrix} , \boldsymbol{\sigma} = \begin{pmatrix} 0.01\\ 0.01 \end{pmatrix} .

    Then, the optimal switching control and the optimal continuous control of {Problem \ (4.1)} are depicted in this example. Figure 1 shows the trajectory of state variables. Applying genetic algorithm stated in section 5 yields the results of optimal switching sequence v^{*}(\cdot) = (2, 4, 2, 2, 2, 2, 2, 2, 2, 1) which is displayed in Figure 2. Figure 3 presents the optimal continuous control. The state space trajectories is shown in Figure 4. We can respectively find the optimal matrix A_{j} in H_{j} for each stage, which is shown in Table 3. The optimal value is J(\boldsymbol{x}_{0}, 0) = 13.3290.

    Figure 1.  The trajectory of state variables.
    Figure 2.  The optimal switching sequence of subsystems.
    Figure 3.  The optimal continuous control.
    Figure 4.  The state space trajectories.
    Table 3.  The optimal matrix A_{j} of Example 6.2.
    j A_{j}
    0 \begin{pmatrix} 5.8108 \\ -3.1867 \\ -3.1867 \\ 7.1978 \end{pmatrix}
    1 \begin{pmatrix} 6.0913 \\ -3.8159\\ -3.8159 \\ 7.1593 \end{pmatrix}
    2 \begin{pmatrix} 2.4372 \\ 0.4006 \\ 0.4006 \\ 1.1314 \end{pmatrix}
    3 \begin{pmatrix} 2.7016 \\ 0.6034 \\ 0.6034 \\ 1.2869 \end{pmatrix}
    4 \begin{pmatrix} 2.6376 \\ 0.5629 \\ 0.5629 \\ 1.2582 \end{pmatrix}
    5 \begin{pmatrix} 2.5316 \\ 0.4705 \\ 0.4705 \\ 1.1843 \end{pmatrix}
    6 \begin{pmatrix} 2.6241 \\ 0.5332 \\ 0.5332 \\ 1.2417 \end{pmatrix}
    7 \begin{pmatrix} -1.3911 \\ -0.8950 \\ -0.8950 \\ 0.7183 \end{pmatrix}
    8 \begin{pmatrix} 3.989 \\ 7.42 \\ 7.42 \\ 20.6 \end{pmatrix}
    9 \begin{pmatrix} 8 \\ 3 \\ 3 \\ 2 \end{pmatrix}

     | Show Table
    DownLoad: CSV

    Example 6.3. In this example, we consider the uncertain discrete-time optimal control {Problem \ (4.1)} comprised of five subsystems, which is similar to the Example 6.2, but the difference is that uncertain random variable {h} (\xi_{t}, \eta _{t}, t) = \xi _{t} + \eta _{t} .

    Subsystem 1:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&3 \\ 1& 1 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 1\\ 1 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 2:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 1&2 \\ 2& 1 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 3\\ 2 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 3:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&1 \\ 1&2 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 4\\ 1 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 4:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&2 \\ 1&3 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 2\\ 2 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    Subsystem 5:

    \begin{align*} \boldsymbol{x}(t+1) = \begin{bmatrix} 2&3 \\ 3&1 \end{bmatrix} \boldsymbol{x}(t)+\begin{pmatrix} 2\\ 3 \end{pmatrix}\boldsymbol{u}(t)+\boldsymbol{\sigma}_{t}{h} (\xi_{t}, \eta _{t}, t ). \end{align*}

    The optimal switching control and the optimal continuous control of {Problem \ (4.1)} are depicted in this example. The trajectory of state variables is shown in the Figure 5. Figure 6 shows the optimal switching sequence v^{*}(\cdot) = (2, 4, 5, 2, 2, 2, 2, 2, 2, 1) . Figure 7 presents the optimal continuous control. The state space trajectories is shown in Figure 8. We can respectively find the optimal matrix A_{j} in H_{j} for each stage, which is shown in Table 4. The optimal value is J(\boldsymbol{x}_{0}, 0) = 13.7860.

    Figure 5.  The trajectory of state variables.
    Figure 6.  The optimal switching sequence of subsystems.
    Figure 7.  The optimal continuous control.
    Figure 8.  The state space trajectories.
    Table 4.  The optimal matrix A_{j} of Example 6.3.
    j A_{j}
    0 \begin{pmatrix} 6.0913 \\ -3.8159 \\ -3.8159 \\ 7.1593 \end{pmatrix}
    1 \begin{pmatrix} -11.0982 \\ -6.2216 \\ -6.2216 \\ 20.3842 \end{pmatrix}
    2 \begin{pmatrix} 3.5024 \\ -0.3987 \\ -0.3987 \\ 1.4655 \end{pmatrix}
    3 \begin{pmatrix} 3.4036 \\ -0.4034 \\ -0.4034 \\ 1.4244 \end{pmatrix}
    4 \begin{pmatrix} 3.2658 \\ -0.4343 \\ -0.4343 \\ 1.3612 \end{pmatrix}
    5 \begin{pmatrix} 4.0501 \\ -0.7173 \\ -0.7173 \\ 1.2435 \end{pmatrix}
    6 \begin{pmatrix} 3.9058 \\ -0.1397 \\ -0.1397 \\ 2.0140 \end{pmatrix}
    7 \begin{pmatrix} 5.3386 \\ -0.3105 \\ -0.3105 \\ 1.5567 \end{pmatrix}
    8 \begin{pmatrix} 3.989 \\ 4.466 \\ 4.466 \\ 7.804 \end{pmatrix}
    9 \begin{pmatrix} 8 \\ 3 \\ 3 \\ 2 \end{pmatrix}

     | Show Table
    DownLoad: CSV

    In this paper, we study the optimal control problem of uncertain random multistage switching systems and propose methods for designing the switching laws and continuous control strategies. The analytical solution of the optimal strategy and the optimal objective function can be described exactly by H_{j} , whose magnitude varies with the length of the control time domain. The genetic algorithm is applied to obtain the optimal control and optimal values. The effectiveness of the method is verified with examples.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that there is no conflict of interest.



    [1] X. Xu, P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Trans. Automat. Control, 49 (2004), 2–16. https://doi.org/10.1109/TAC.2003.821417 doi: 10.1109/TAC.2003.821417
    [2] F. Zhu, P. J. Antsaklis, Optimal control of hybrid switched systems: a brief survey, Discrete Event Dyn. Syst., 25 (2015), 345–364. https://doi.org/10.1007/s10626-014-0187-5 doi: 10.1007/s10626-014-0187-5
    [3] S. C. Bengea, R. A. Decarlo, Optimal control of switching systems, Automatica, 41 (2005), 11–27. https://doi.org/10.1016/j.automatica.2004.08.003 doi: 10.1016/j.automatica.2004.08.003
    [4] M. Kamgarpour, C. Tomlin, On optimal control of non-autonomous switched systems with a fixed mode sequence, Automatica, 48 (2012), 1177–1181. https://doi.org/10.1016/j.automatica.2012.03.019 doi: 10.1016/j.automatica.2012.03.019
    [5] R. Li, K. L. Teo, K. H. Wong, G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Math. Comput. Model., 43 (2006), 1393–1403. https://doi.org/10.1016/j.mcm.2005.08.012 doi: 10.1016/j.mcm.2005.08.012
    [6] X. Wu, K. Zhang, M. Cheng, Computational method for optimal control of switched systems with input and state constraints, Nonlinear Anal.: Hybrid Syst., 26 (2017), 1–18. https://doi.org/10.1016/j.nahs.2017.04.001 doi: 10.1016/j.nahs.2017.04.001
    [7] Y. Yang, F. Chen, J. Lang, X. Chen, J. Wang, Sliding mode control of persistent dwell-time switched systems with random data dropouts, Appl. Math. Comput., 400 (2021), 126087. https://doi.org/10.1016/j.amc.2021.126087 doi: 10.1016/j.amc.2021.126087
    [8] Q. Abushov, C. Aghayeva, Stochastic maximum principle for nonlinear optimal control problem of switching systems, J. Comput. Appl. Math., 259 (2014), 371–376. https://doi.org/10.1016/j.cam.2013.06.010 doi: 10.1016/j.cam.2013.06.010
    [9] X. D. Koutsoukos, Optimal control of stochastic hybrid systems based on locally consistent markov decision processes, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005,435–440. https://doi.org/10.1109/.2005.1467054
    [10] W. Zhang, J. Hu, J. Lian, Quadratic optimal control of switched linear stochastic systems, Syst. Control Lett., 59 (2010), 736–744. https://doi.org/10.1016/j.sysconle.2010.08.010 doi: 10.1016/j.sysconle.2010.08.010
    [11] X. Liu, K. Zhang, S. Li, S. Fei, H. Wei, Optimal control of switching times in switched stochastic systems, Asian J. Control, 17 (2015), 1580–1589. https://doi.org/10.1002/asjc.961 doi: 10.1002/asjc.961
    [12] X. Liu, S. Li, K. Zhang, Optimal control of switching time in switched stochastic systems with multi-switching times and different costs, Int. J. Control, 90 (2017), 1604–1611. https://doi.org/10.1080/00207179.2016.1214879 doi: 10.1080/00207179.2016.1214879
    [13] Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybern. Syst.: Int. J., 41 (2010), 535–547. https://doi.org/10.1080/01969722.2010.511552 doi: 10.1080/01969722.2010.511552
    [14] H. Yan, Y. Zhu, Bang-bang control model for uncertain switched systems, Appl. Math. Model., 39 (2015), 2994–3002. https://doi.org/10.1016/j.apm.2014.10.042 doi: 10.1016/j.apm.2014.10.042
    [15] T. Jia, X. Chen, L. He, F. Zhao, J. Qiu, Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive sliding mode control and its application, Fractal Fract., 6 (2022), 502. https://doi.org/10.3390/fractalfract6090502 doi: 10.3390/fractalfract6090502
    [16] Suriguga, Y. Kao, C. Shao, X. Chen, Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates, Appl. Math. Comput., 389 (2021), 125559. https://doi.org/10.1016/j.amc.2020.125559 doi: 10.1016/j.amc.2020.125559
    [17] Y. Liu, Uncertain random variables: a mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625–634. https://doi.org/10.1007/s00500-012-0935-0 doi: 10.1007/s00500-012-0935-0
    [18] Y. Liu, Uncertain random programming with applications, Fuzzy Optim. Decis. Making, 12 (2013), 153–169. https://doi.org/10.1007/s10700-012-9149-2 doi: 10.1007/s10700-012-9149-2
    [19] Y. Yu, X. Liu, Y. Zhang, Z. Jia, On the complete convergence for uncertain random variables, Soft Comput., 26 (2022), 1025–1031. https://doi.org/10.1007/s00500-021-06504-8 doi: 10.1007/s00500-021-06504-8
    [20] B. Li, X. Li, K. L. Teo, P. Zheng, A new uncertain random portfolio optimization model for complex systems with downside risks and diversification, Chaos, Solitons Fract., 160 (2022), 112213. https://doi.org/10.1016/j.chaos.2022.112213 doi: 10.1016/j.chaos.2022.112213
    [21] R. Gao, K. Yao, Importance index of components in uncertain random systems, Knowl.-Based Syst., 109 (2016), 208–217. https://doi.org/10.1016/j.knosys.2016.07.006 doi: 10.1016/j.knosys.2016.07.006
    [22] X. Chen, Y. Zhu, B. Li, Optimal control for uncertain random continuous-time systems, Optimization, 72 (2023), 1385–1428. https://doi.org/10.1080/02331934.2021.2017429 doi: 10.1080/02331934.2021.2017429
    [23] H. Ke, T. Su, Y. Ni, Uncertain random multilevel programming with application to production control problem, Soft Comput., 19 (2015), 1739–1746. https://doi.org/10.1007/s00500-014-1361-2 doi: 10.1007/s00500-014-1361-2
    [24] H. Dalman, Uncertain random programming models for fixed charge multi-item solid transportation problem, New Trends Math. Sci., 6 (2018), 37–51. https://doi.org/10.20852/ntmsci.2018.244 doi: 10.20852/ntmsci.2018.244
    [25] M. K. Mehlawat, P. Gupta, A. Z. Khan, Portfolio optimization using higher moments in an uncertain random environment, Inf. Sci., 567 (2021), 348–374. https://doi.org/10.1016/j.ins.2021.03.019 doi: 10.1016/j.ins.2021.03.019
    [26] J. Zhai, M. Bai, J. Hao, Uncertain random mean-variance-skewness models for the portfolio optimization problem, Optimization, 71 (2022), 3941–3964. https://doi.org/10.1080/02331934.2021.1928122 doi: 10.1080/02331934.2021.1928122
    [27] X. Chen, Y. Zhu, Optimal control for multistage uncertain random dynamic systems with multiple time delays, ISA Trans., 129 (2022), 171–191. https://doi.org/10.1016/j.isatra.2022.02.016 doi: 10.1016/j.isatra.2022.02.016
    [28] H. Yan, Y. Sun, L. Lin, Y. Zhu, A linear control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267–282. https://doi.org/10.3934/jimo.2016016 doi: 10.3934/jimo.2016016
    [29] W. Zhang, J. Hu, A. Abatet, On the value functions of the discrete-time switched LQR problem, IEEE Trans. Automat. Control, 54 (2009), 2669–2674. https://doi.org/10.1109/TAC.2009.2031574 doi: 10.1109/TAC.2009.2031574
    [30] X. Chen, Y. Zhu, B. Li, H. Yan, A linear quadratic model based on multistage uncertain random systems, Eur. J. Control, 47 (2019), 37–43. https://doi.org/10.1016/j.ejcon.2018.09.009 doi: 10.1016/j.ejcon.2018.09.009
    [31] Y. Zhu, Functions of uncertain variables and uncertain programming, J. Uncertain Syst., 6 (2012), 278–288.
    [32] S. Mirjalili, Genetic algorithm, In: Evolutionary algorithms and neural networks: theory and applications, 780 (2019), 43–55. https://doi.org/10.1007/978-3-319-93025-1
  • This article has been cited by:

    1. Yuefen Chen, Bo Li, Portfolio optimization with background risk and diversification based on uncertain random programming, 2024, 0, 1547-5816, 0, 10.3934/jimo.2024201
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1336) PDF downloads(61) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog