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Abstract: Optimal control problems for switched systems how best to switch between different
subsystems. In this paper, two kinds of linear quadratic optimal control problems for multistage
switched systems composing of both randomness and uncertainty are studied. Chance theory brings
us a useful tool to deal with this indeterminacy. Based on chance theory and Bellman’s principle,
the analytical expressions are derived for calculating both the optimal control input and the optimal
switching control law. Optimal control is implemented by genetic algorithm instead of enumerating
all the elements of a series of sets whose size grows exponentially. Finally, the results of numerical
examples are provided to illustrate the effectiveness of the proposed method.
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1. Introduction

Switched systems consist of several subsystems, where under some presumed conditions, only
one of the subsystems is active at each switching time. Networked control systems with possible
communication interruptions, automobile transmission systems and on/off heating systems are all
typical examples of switched systems.

A simple multistage switched system can be described as

x(t + 1) = Av(t)x(t) + Bv(t)u(t) t ∈ Z+

where v(t) is the discrete switching control rule that determines the corresponding active subsystem at
time t ∈ Z+, u(t) is the control input, and x(t) is the state.

Unlike customary non-switched system optimal control issues, the challenge for optimal control
problems of switching systems is to choose the switching control v(t) determines the switching
sequence of the subsystems. In recent years, the problem has extensively studied [1–7]. For example,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231161


22790

Zhu and Antsaklis [2] focusd on optimal control techniques for piecewise affine according to the
type of switching, for the IFS problem. For the EFS problem, two-stage optimization, embedding
transformation and switching LQR design methods are studied. Wu et al. [6] studied the optimal
control problem of a switching system with input and state constraints. Yang et al. [7] concentrated on
the sliding mode control problem for a set of discrete-time switched systems.

So far, the research on optimal control problems for deterministic switched systems is the focus
of most scholars. However, the complexity of the real world leads us to face various forms of
indeterminacy. In many cases, two kinds of indeterminacy exist in the control system. One
is characterized as randomness and implemented as stochastic noise [8–12]. For example, Liu
et al. [11, 12] solves the optimal control problem for a class of time-invariant stochastic switching
systems with multiple switching times. The other is subjective which is modeled as uncertain
noise [13–16], Jia et al. [15] studied finite-time synchronization (FTS) of uncertain fractional-order
memristive neural networks (FMNNs) with leakage and discrete and Suriguga [16] studies the mean
square exponential stability of higher order Markovian jump reaction-diffusion HNNs (RHNNs) with
uncertain transition rates (GUTR) and time-varying delays. However, in practice, the system may be
affected not only by randomness but also by uncertainty. To handle this system, Liu [17] introduced
chance theory to model complicated including both randomness and uncertainty. After that, Liu [18]
studied uncertain stochastic programming and proposed its mathematical properties, the concept of
uncertain stochastic graphs and uncertain stochastic networks. Numerous academics have recently
conducted substantial research in this field. In the chance space, Yu et al. [19] looked into uncertain
random variables based on the possibility that uncertainty and randomness phenomena may occur
simultaneously in some complex systems. Li et al. [20] applied uncertain random variables to security
returns in financial markets, in the an uncertain stochastic portfolio selection issue with simultaneous
stochastic and uncertain returns is presented. Based on the study of the significance of components in
uncertain random dependability systems, Gao and Yao [21] have developed the notion of an importance
index that is connected to this. Chen et al. [22] proposed the optimal equation to solve the dynamic
optimization problems under uncertain stochastic continuous-time systems.

Currently, the study of uncertainty optimal control models for switching systems is mostly
separate from the study of random optimal control. However, uncertainty and randomness can exist
simultaneously in reality. Uncertain random systems may be described by differential equations or
difference equations are concerned with the dynamic uncertain random phenomena. The uncertain
random phenomena occur in a variety of aspects, such as uncertain random programming [23, 24]
and uncertain random portfolio selection [25, 26]. However, the optimal control of uncertain random
switched systems has not been studied yet. Different from the separate indeterministic environment
(stochastic or uncertain situation), this paper considers an optimal control problem for uncertain
random switched systems. The dynamic systems are described by both the stochastic differential
equation and uncertain differential equation. For the uncertain stochastic optimal control of switched
systems, the goal of realizing the optimal control is to make the system realize the dynamic evolution
in different stages according to the optimal logical relations under the constraints of uncertain random
variables. For multistage uncertain random switched systems, two kinds of linear quadratic (LQ)
optimal control problems are examined in this study. The first model is a LQ model where the
disturbance is described by the sum of an uncertain variable and a random variable. The second model
is also a LQ model but the disturbance is described by the product of an uncertain variable and a
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random variable. We derive the analytical expressions of these two models. The analytical expressions
are derived characterizing by a sequence of sets with ordered pairs of matrices. The size of these
sets grows exponentially. To overcome difficulty, we apply genetic algorithm to achieve the optimal
control. Our paper contributes to the literature in the following way. First, an optimal control problem
for uncertain random switched systems is introduced. Second, the recurrence equation for switched
systems in uncertain random environments is given, and then the equation for the proposed model is
obtained. Third, the analytical expressions of the optimal control and optimal values of two types of
optimal control problems are obtained. At last, optimal control is implemented by genetic algorithm
instead of enumerating all the elements of a series of sets whose size grows exponentially.

The following describes how this paper is organized. In section 2, some fundamental concepts
and theorems in chance theory are reviewed. In section 3, the expectation criteria is used to build
an uncertain stochastic optimal control problem of multistage switched systems. In section 4, two
kinds of LQ models are introduced and the analytical expressions of the optimal result are derived.
In section 5, genetic algorithm and its implementation are presented. In section 6, three illustrative
numerical examples are given. Finally, section 7 summarizes this paper.

2. Preliminaries

Liu [17] proposed chance theory to deal with the uncertain random phenomena.
The triple (Γv,Lv,Mv)×(Ωr,Ar, Pr) = (Γv×Ωr,Lv×Ar,Mv×Pr) is known as a chance space [17,18],

where (Γv,Lv,Mv) is an uncertainty space and (Ωr,Ar, Pr) is a probability space. Γv × Ωr, Lv × Ar,
andMv × Pr are the universal set, σ-algebra and product measure, respectively. Define an uncertain
random variable ξvr in the chance space (Γv,Lv,Mv)× (Ωr,Ar, Pr) = (Γv ×Ωr,Lv ×Ar,Mv × Pr) with
chance distribution

Φ(z) = Ch{ξvr ≤ z}.

The expected value of ξvr is defined by

Ech[ξvr] =
∫ +∞

0
Ch{ξvr ≥ z}dz −

∫ 0

−∞

Ch{ξvr ≤ z}dz

provided that one of
∫ +∞

0
Ch{ξvr ≥ z}dz and

∫ 0

−∞
Ch{ξvr ≤ z}dz is finite. The chance measure of ξvr is

defined as

Ch {ξvr} =

∫ 1

0
Pr {ωr ∈ Ωr | Mv{γv ∈ Γv | (γv, ωr) ∈ ξvr} ≥ z} dz.

Theorem 2.1. (Liu [17]) For numbers A and B, we have

Ech[Aξvr + B] = AEch[ξvr] + B,

if ξvr is an uncertain random variable and its expected value exists.

Theorem 2.2. (Liu [18]) ζ1, ζ2, · · · , ζm are independent random variables whose probability
distributions are Ψ1,Ψ2, · · · ,Ψm, η1, η2, · · · , ηm are uncertain variables, and f is a measurable
function. Then

ξ = f (ζ1, ζ2, · · · , ζm, η1, η2, ..., ηm)
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has an expected value

Ech(ξ) =
∫

Rm

(z1, z2, ..., zm, η1, η2, · · · , ηm)dΨ1(z1)dΨ2(z2) · · · × Ψm(zm),

where Ech[ f (z1, z2, · · · , zm, η1, η2, · · · , ηm)] is the expected value of the uncertain variable
f (z1, z2, · · · , zm, η1, η2, · · · , ηm) for any real numbers z1, z2, · · · , zm.

Lemma 2.1. (Chen [27]) If the independent uncertain random variables ξvr
1 , ξ

vr
2 , · · · , ξ

vr
m whose

expected values exist, it follows

Ech[
m∑

t=1

βtξ
vr
t ] =

m∑
t=1

βtEch[ξvr
t ], βt ∈ R, t = 1, 2, ...,m.

3. Problem statement

Chance theory is effective at resolving problems when switched systems are perturbed by
indeterminate factors which include both uncertainty and randomness. In this section, we will
introduce uncertain random problems for multistage switched systems. The general form of the model
can be written as follows: 

J(x0, 0) = min
u(t)

v(t)∈N
0≤t≤τ

Ech[
∑τ

t=0 fv(t)(x(t),u(t), t)]

subject to:
x(t + 1) = ψv(t)(x(t),u(t), t) + σth(ξt, ηt, t),
t = 0, 1, 2, · · · , τ − 1,
x(0) = x0,

(3.1)

(i) where x(t) ∈ Rl, u(t) ∈ Rr are respectively the state vector and the control vector at stage t, for
t ∈ {0, 1, · · · , τ}; (ii) v(t) ∈ N ≜ {1, · · · , n} denotes the switching control of the subsystem at stage
t; (iii) for each i ∈ N, ψi, fi : Rl × Rr × [0,∞) → Rl are vector-value functions, associated with the
subsystem i, the system’s first stage vector is denoted by x(0); (iv) for each t ∈ {0, 1, · · · , τ}, σt , 0,
h(ξt, ηt, t) is the disturbance, ξ1, ξ2, · · · , ξτ are random variables, η1, η2, · · · , ητ are uncertain variables,
they are independent of each other.

It is worth noting that the switching signal v(·) is viewed as an external input. Problem (3.1) of
interest is to design jointly a continuous input u(·) and a discrete switching sequence v(·) so as to
optimize the performance.

For 0 ≤ j ≤ τ, let J(x j, j) be the optimal reward obtained in [ j, τ] provided that at stage j, we are in
state x( j) = x j.

Based on the dynamic approach, the recurrence formula can be found as follows:

Theorem 3.1. For Problem (3.1), we have

J(xτ, τ) = min
u(τ),v(τ)

f (x(τ),u(τ), τ), (3.2)

J(x j, j) = min
u(t),v(t),
j≤t≤τ−1

Ech[ f (x( j),u( j), j) + J(x j+1, j + 1)]. (3.3)
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Reference [28] provides a reference for the proof of Theorem 3.1. According to Theorem 3.1, we
should solve Eqs (3.2) and (3.3) sequentially from the final stage to the first stage or in reverse order in
order to solve Problem (3.1).

4. Analytical solution for linear quadratic model

The following uncertain stochastic optimal control problem, which has a linear quadratic objective
function and is part of an uncertain random linear system, can be analytically solved by applying
recurrence Eqs (3.2) and (3.3).

J(x0, 0) = min
u(t),v(t),
0≤t≤τ−1

Ech[x(τ)T Q f x(τ) +
∑τ−1

t=0 (x(t)T Qv(t)x(t) + u(t)T Rv(t)u(t))]

subject to:
x(t + 1) = Gv(t)x(t) + Fv(t)u(t) + σth(ξt, ηt, t),
t = 0, 1, 2, · · · , τ − 1,
x(0) = x0,

(4.1)

where for any i ∈ N, Qi ≥ 0, Ri > 0, (Gi, Fi) and (Qi, Ri) constitute the state constraints matrix pair
and the cost matrix pair of the i-th subsystem, respectively. Q f > 0 is the terminal penalty matrix.

We will discuss two cases of uncertain random variables h(ξt, ηt, t) : the sum ξt + ηt and the product
ξt · ηt.

4.1. LQ model with uncertain random variable h(ξt, ηt, t) = ξt × ηt

Now we consider Problem (4.1) when uncertain random variable h(ξt, ηt, t) = ξt × ηt. As in [29],
define the following Riccati operator ρi(A) : S +l → S +l for given i ∈ N and A ∈ S +l ,

ρi(A j) ≜ Qi + GT
i A jGi − GT

i A jFi(FT
i A jFi + Ri)−1FT

i A jGi. (4.2)

Let {Hi}
τ
i=0 stand for the set of recursively defined ordered pairs of vectors:

H0 = {(Q f , 0)},H j+1 =
⋃

(Aτ− j,γτ− j)∈H j

Γ j(Aτ− j, γτ− j), Aτ = Q f , γτ = 0,

with

Γ j(Aτ− j, γτ− j) =
⋃
i∈N

{ρi(Aτ− j), (γτ− j +
1
9
σT
τ− j−1 Aτ− jστ− j−1)}, (Aτ− j, γτ− j) ∈ H j,

for j = 0, 1, · · · , τ − 1.
Assume that the following condition is true for each i ∈ N, j = 0, 1, · · · , τ − 1 and A ⩾ 0,

1
2

∣∣∣(Gi( j)x( j) + Fi( j)u( j))T A j+1σ j

∣∣∣ ≥ σT
j A j+1σ j, (4.3)

this means that at each stage j, the interference on each subsystem is relatively small.
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Theorem 4.1. Suppose h(ξt, ηt, t) = ξt × ηt, where ξt ∼ U(−1, 1) is a uniform random variable and
ηt ∼ L(−1, 1) is a common linear uncertain variable, for t=0,1, 2, · · · , τ−1. Then at stage j, for given
x j, the optimal switching control of Problem (4.1) is

v∗( j) = arg min
v( j)∈N

(A j+1,γ j+1)∈Hτ− j−1

{xT
j ρv( j)(A j+1)x j +

1
9
σT

j A j+1σ j + γ j+1}

and the optimal continuous control

u∗( j) = −(Rv∗( j) + FT
v∗( j) A∗j+1Fv∗( j))−1FT

v∗( j) A∗j+1Gv∗( j)x j,

where
(v∗( j), A∗j, γ j) = arg min

v( j)∈N
(A j+1,γ j+1)∈Hτ− j−1

{xT
j ρv( j)(A j+1)x j +

1
9
σT

j A j+1σ j + γ j+1}.

The optimal value of Problem (4.1) is

J(x0, 0) = min
(A0,γ0)∈Hτ

[xT
0 A0x0 + γ0].

Proof. It can be proved by induction.
We will derive the analytical solution of Problem (4.1). First, we have

J(xτ, τ) = x(τ)T Q f x(τ) = min
(Aτ,γτ)∈H0

(x(τ)T Aτx(τ) + γτ).

For j = τ − 1, the following equation holds by Theorem 3.1,

J(xτ−1, τ − 1) = min
u(τ−1),v(τ−1)

Ech

[
x(τ − 1)T Qv(τ−1)x(τ − 1) + u(τ − 1)T Rv(τ−1)u(τ − 1) + J(xτ, τ)

]
= min

u(τ−1),v(τ−1)

{
x(τ − 1)T Qv(τ−1)x(τ − 1) + u(τ − 1)T Rv(τ−1)u(τ − 1)

+Ech[(Gv(τ−1)x(τ − 1) + Fv(τ−1)u(τ − 1) + στ−1h(ξτ−1, ητ−1, τ − 1))T Q f

(Gv(τ−1)x(τ − 1) + Fv(τ−1)u(τ − 1) + στ−1h(ξτ−1, ητ−1, τ − 1))]
}

= min
u(τ−1),v(τ−1)

{
x(τ − 1)T (Qv(τ−1) + GT

v(τ−1)Q f Gv(τ−1))x(τ − 1) + u(τ − 1)T (Rv(τ−1)

+FT
v(τ−1)Q f Fv(τ−1))u(τ − 1) + 2u(τ − 1)T FT

v(τ−1)Q f Gv(τ−1)x(τ − 1)

+Ech[2(Gv(τ−1)x(τ − 1) + Fv(τ−1)u(τ − 1))T Q fστ−1h(ξτ−1, ητ−1, τ − 1)

+σT
τ−1Q fστ−1h2(ξτ−1, ητ−1, τ − 1)]

}
.

Denote aτ−1 = 2
(
Gv(τ−1)x(τ − 1) + Fv(τ−1)u(τ − 1)

)T Q fστ−1, bτ−1 = σT
τ−1Q fστ−1. Suppose

h(ξt, ηt, t) = ξt × ηt, where ξt ∼ U(−1, 1) is a uniform random variable and ηt ∼ L(−1, 1) is a common
linear uncertain variable, for t = 0, 1, · · · , τ − 1, we have

Ech

[
aτ−1h(ξτ−1, ητ−1, τ − 1) + bτ−1h2(ξτ−1, ητ−1, τ − 1)

]
= Ech

[
aτ−1(ξτ−1ητ−1) + bτ−1 (ξτ−1ητ−1)2

]
AIMS Mathematics Volume 8, Issue 10, 22789–22807.
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=

∫ 1

−1
Ech

[
aτ−1(zτ−1ητ−1) + bτ−1 (zτ−1ητ−1)2

]
dΨτ−1(zτ−1)

=

∫ 1

−1
Ech

[
bτ−1z2

τ−1

(
aτ−1

bτ−1zτ−1
ητ−1 + η

2
τ−1

)]
dΨτ−1(zτ−1). (4.4)

Because aτ−1
bτ−1zτ−1

ητ−1 + η
2
τ−1 is an uncertain variable, according to [30], we have

Ech

[
aτ−1h(ξτ−1, ητ−1, τ − 1) + bτ−1h2(ξτ−1, ητ−1, τ − 1)

]
=

∫ 1

−1

[
bτ−1z2

τ−1Ech

(
aτ−1

bτ−1zτ−1
ητ−1 + η

2
τ−1

)]
dΨτ−1(zτ−1).

For z(τ−1) ∈ (−1, 1), with condition (4.3), we know that
∣∣∣∣ aτ−1
bτ−1zτ−1

∣∣∣∣ ⩾ 4. According to Example 2

in [31], we can get Ech

[
aτ−1

bτ−1zτ−1
ητ−1 + η

2
τ−1

]
= 1

3 . Thus

Ech

[
aτ−1h(ξτ−1, ητ−1, τ − 1) + bτ−1h2(ξτ−1, ητ−1, τ − 1)

]
=

1
3

bτ−1

∫ 1

−1
z2
τ−1dΨτ−1(zτ−1)

=
1
9

bτ−1

=
1
9
σT
τ−1Q fστ−1. (4.5)

Substituting (4.5) into (4.4) yields

J(xτ−1, τ − 1) = min
u(τ−1),v(τ−1)

{
x(τ − 1)T (Qv(τ−1) + GT

v(τ−1)Q f Gv(τ−1))x(τ − 1) + u(τ − 1)T (Rv(τ−1)

+ FT
v(τ−1)Q f Fv(τ−1))u(τ − 1) + 2u(τ − 1)T FT

v(τ−1)Q f Gv(τ−1)x(τ − 1) +
1
9
σT
τ−1Q fστ−1

}
= min

u(τ−1),v(τ−1)
f (u(τ − 1), v(τ − 1)). (4.6)

The optimal control u∗(τ − 1) satisfies

∂ f
∂u(τ − 1)

= 2(Rv∗(τ−1) + FT
v∗(τ−1)Q f Fv∗(τ−1))u∗(τ − 1) + 2FT

v∗(τ−1)Q f Gv∗(τ−1)x(τ − 1) = 0. (4.7)

Since

∂2 f
∂u2(τ − 1)

= 2(Rv∗(τ−1) + FT
v∗(τ−1)Q f Fv∗(τ−1)) > 0,

we have

u∗(τ − 1) = −(Rv∗(τ−1) + FT
v∗(τ−1)Q f Fv∗(τ−1))−1FT

v∗(τ−1)Q f Gv∗(τ−1)x(τ − 1). (4.8)

Substituting (4.8) into (4.6), we get
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J(xτ−1, τ − 1) = min
v(τ−1)

{
x(τ − 1)T [Qv(τ−1) + GT

v(τ−1)Q f Gv(τ−1) − GT
v(τ−1)Q f Fv(τ−1)(Rv∗(τ−1)

+FT
v∗(τ−1)Q f Fv∗(τ−1))−1FT

v∗(τ−1)Q f Gv∗(τ−1)]x(τ − 1) +
1
9
σT
τ−1Q fστ−1

}
. (4.9)

According to the definition of ρi(A) and H j, Eq.(4.9) can be written as

J(xτ−1, τ − 1) = min
v(τ−1)

[xT
τ−1ρv(τ−1)(Q f )xτ−1 +

1
9
σT
τ−1Q fστ−1 + γτ]

= min
(Aτ−1,γτ−1)∈H1

[xT
τ−1 Aτ−1xτ−1 + γτ−1].

Moreover, we have

v∗(τ − 1) = arg min
(Aτ,γτ)∈H0

{xT
τ−1ρv(τ−1)(Aτ)xτ−1 +

1
9
σT
τ−1Q fστ−1 + γτ]}.

For j = τ − 2, we have

J(xτ−2, τ − 2) = min
u(τ−2),v(τ−2)

Ech

[
x(τ − 2)T Qv(τ−2)x(τ − 2) + u(τ − 2)T Rv(τ−2)u(τ − 2) + J(xτ−1, τ − 1)

]
= min

u(τ−2),v(τ−2)
(Aτ−1,γτ−1)∈H1

{
x(τ − 1)T Qv(τ−1)x(τ − 1) + u(τ − 1)T Rv(τ−1)u(τ − 1)

+ Ech[(Gv(τ−2)x(τ − 2) + Fv(τ−2)u(τ − 2) + στ−2h(ξτ−2, ητ−2, τ − 2)
)T Aτ−1

(
Gv(τ−2)

× x(τ − 2) + Fv(τ−2)u(τ − 2) + στ−2h(ξτ−2, ητ−2, τ − 2))] + γτ−1
}

= min
u(τ−1),v(τ−1)

(Aτ−1,γτ−1)∈H1

{
x(τ − 2)T (Qv(τ−2) + GT

v(τ−2) Aτ−1Gv(τ−2))x(τ − 2) + u(τ − 2)T (Rv(τ−2)

+FT
v(τ−2) Aτ−1Fv(τ−2))u(τ − 2) + 2u(τ − 2)T FT

v(τ−2) Aτ−1Gv(τ−2)x(τ − 2)

+ Ech[2(Gv(τ−2)x(τ − 2) + Fv(τ−2)u(τ − 2))T Aτ−1στ−2h(ξτ−2, ητ−2, τ − 2)

+ σT
τ−2 Aτ−1στ−2h2(ξτ−2, ητ−2, τ − 2)] + γτ−1

}
.

From a calculation similar to (4.5), it can be seen that

Ech[2
(
Gv(τ−2)x(τ − 1) + Fv(τ−2)u(τ − 2)

)T Aτ−1στ−2h(ξτ−2, ητ−2, τ − 2)
+ σT

τ−2 Aτ−1στ−2h2(ξτ−2, ητ−2, τ − 2)]

=
1
9
σT
τ−2 Aτ−1στ−2. (4.10)

By a similar process as above, we can obtain

u∗(τ − 2) = −(Rv∗(τ−2) + FT
v∗(τ−2) Aτ−1Fv∗(τ−2))−1FT

v∗(τ−2) Aτ−1Gv∗(τ−2)xτ−2.

J(xτ−2, τ − 2) = min
v(τ−2)

(Aτ−1,γτ−1)∈H1

[xT
τ−2ρv(τ−2)(A)xτ−2 +

1
9
σT
τ−2 Aτ−1στ−2 + γτ−1]
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= min
(Aτ−2,γτ−2)∈H2

[xT
τ−2 Aτ−2xτ−2 + γτ−2]

and

v∗(τ − 2) = arg min
v(τ−2)

(Aτ−1,γτ−1)∈H1

{xT
τ−2ρv(τ−2)(Aτ−1)xτ−2 +

1
9
σT
τ−2 Aτ−1στ−2 + γτ−1]}.

By induction, Theorem 4.1 can be proved. □

In this section, LQ model with uncertain random variable h(ξt, ηt, t) = ξt × ηt is derived in details.
The optimal switching control and continuous control of Problem (4.1) in the h(ξt, ηt, t) = ξt + ηt case
still needs to be derived, we will argue in the next section.

4.2. LQ model with uncertain random variable h(ξt, ηt, t) = ξt + ηt

Theorem 4.2. Suppose h(ξt, ηt, t) = ξt + ηt, where ξt ∼ U(−1, 1) is a uniform random variable and
ηt ∼ L(−1, 1) is a common linear uncertain variable, for t = 0, 1, 2, · · · , τ − 1. Then at stage j, for
given x j, the optimal switching control of Problem (4.1) is

v∗( j) = arg min
v( j)∈N

(A j+1,γ j+1)∈Hτ− j−1

{xT
j ρv( j)(A j+1)x j +

2
3
σT

j+1 A j+1σ j+1 + γ j+1}

and the optimal continuous control

u∗( j) = −(Rv∗( j) + FT
v∗( j) A j+1Fv∗( j))−1FT

v∗( j) A j+1Gv∗( j)x j,

where

(v∗( j), A∗j, γ j) = arg min
v( j)∈N

(A j+1,γ j+1)∈Hτ− j−1

{xT
j ρv( j)(A j+1)x j +

2
3
σT

j+1 A j+1x j + γ j+1}.

The optimal value of Problem (4.1) is

J(x0, 0) = min
(A0,γ0)∈Hτ

[xT
0 A0x0 + γ0].

Proof. If h(ξt, ηt, t) = ξt + ηt, for t = 0, 1, 2, · · · , τ − 1. The conclusions may be not the same as
Theorem 4.1.

At stage j, denote a j = 2
(
Gv( j)x j + Fv( j)u( j)

)T
A j+1σ j, b j = σ

T
j A j+1σ j. We have

Ech

[
a jh(ξ j−1, η j−1, j − 1) + b jh2(ξ j−1, η j−1, j − 1)

]
= Ech

[
a j(ξ j + η j) + b j

(
ξ j + η j

)2
]

=

∫ 1

−1
Ech

[
a j(z j + η j) + b j

(
z j + η j

)2
]

dΨ j(z j).

By using Theorem 2.2, we have
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Ech

[
a jh(ξ j−1, η j−1, j − 1) + b jh2(ξ j−1, η j−1, j − 1)

]
=

∫ 1

−1
b jEch[(

a j

b j
(z j + η j) + z2

j + η
2
j + 2z jη j)]dΨ j(z j)

=

∫ 1

−1
b j(

a j

b j
z j + z2

j) + b jEch[(
a j

b j
+ 2z j)η j + η

2
j]dΨ j(z j)

=
1
3

b j + b j

∫ 1

−1
Ech[(

a j

b j
+ 2z j)η j + η

2
j]dΨ j(z j).

For z( j) ∈ (−1, 1), we know that
∣∣∣∣a j

b j
+ 2z j

∣∣∣∣ ⩾ 2. According to Example 2 in [31], we can get

Ech

[
(a j

b j
+ 2z j)η j + η

2
j

]
= 1

3 . Thus

Ech

[
a jh(ξ j−1, η j−1, j − 1) + b jh2(ξ j−1, η j−1, j − 1)

]
=

1
3

b j + b j

∫ 1

−1
Ech[(

a j

b j
+ 2z j)η j + η

2
j]Ψ j(z j)

=
2
3

b j

=
2
3
σT

j A j+1σ j.

□

Then by the similar process to the proof of Theorem 4.1, the theorem can be proved.
According to Theorem 4.1 and Theorem 4.2, we can obtain the analytical expressions of optimal

control input and the optimal switching law by finding all the elements in the H j ( j = τ, τ − 1, · · · , 0).
The cardinality of H j is n j which grows exponentially with respect to j. When the number of

subsystems n and stages τ of the uncertain system is small, we can adapt the enumeration algorithm.
However, when the number of subsystems and stages becomes big, the enumeration method is no
longer applicable. Genetic algorithm is an effective method that can be used to find optimal switching
control and optimal continuous control and may be a good choice to implement efficiently.

5. Genetic algorithm and its implementation

Genetic algorithm [32] is one of the artificial intelligence exhaustive searching techniques that
is inspired by the natural selection. The basic idea of the genetic algorithm approach is to encode
the solutions of the problem as chromosomes or individuals and each chromosome is estimated by
calculating its fitness. For model (4.1), we hope to find the optimal switching sequences v( j)|τ−1

j=0 =

(v(0), · · · , v(τ − 1)), so they are presented as chromosomes. The optimal value J(x0, 0) for model (4.1)
is chosen as the fitness of the chromosome. Chromosomes with high fitness have a higher probability to
be selected. The chromosomes for the next generation are reproduced and formal through “crossover”
and “mutation” processes. Single crossover strategy is used in this paper, the genes of two parents
solutions are swapped before and after a single point. Cells are chosen to be “mutated” randomly
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through the mutation process. If selected, the value of this gene is displaced by another random
subsystem which does not appear in this chromosome. The steps of our proposed genetic algorithm
can now be described as follows.

Parameters for genetic algorithm: pop size, c, m, stopping criterion.
(1) Generate initial population including pop size random chromosome, each individual is

presented as switching law v( j)|τ−1
j=0.

(2) Calculate the fitness J(x0, 0) of each individual.
(3) Use the roulette wheel method to create the mating pool from the current individual.
(4) Selection of two parents for crossover based on crossover rate c.
(5) Application of the single crossover approach to the random mating of these chosen individuals.
(6) The external mutation approach is used to choose individuals from the mating pool for

breakthrough depending on mutation rate m.
(7) After repeated execution steps 2–6, once the termination condition is reached, the best individual

is selected as the result of the optimal control v∗( j)|τ−1
j=0.

6. Illustrate examples

In this section, given the initial Gi, Fi,Qi, Ri, genetic algorithm is applied to solve some problems,
which proves that the content of our previous argument can be realized.

Example 6.1. Consider the uncertain discrete-time optimal control Problem (4.1) with τ = 5, n = 3,
x(0) = (2, 1)T , ξt ∼ U(−1, 1), ηt ∼ L(−1, 1), h(ξt, ηt, t) = ξt × ηt and

G1 =

[
1 2
0 1

]
, G2 =

[
1 2
2 1

]
, G3 =

[
1 2
2 0

]
, σ =

(
0.01
0.01

)
,

(
F1

)
=

(
1
1

)
,
(
F2

)
=

(
1
2

)
,
(
F3

)
=

(
2
1

)
.

Q1 = Q2 = Q3 =

[
1 0
0 1

]
, Q f =

[
4 1
1 2

]
, R1 = R2 = R3 = 1.

Assume that x(0) = (2, 1)T is the initial state. Then the optimal switching control v∗( j) and optimal
objective values J(x j, j) of Problem (4.1) are got by enumeration method and genetic algorithm
respectively. The optimal results using the enumeration method are reflected in Table 1, and the results
we get using the genetic algorithm are shown in Table 2. By comparison, we find that the difference
between the final optimal switched controls and the optimal values is tiny in numerical terms, the
genetic algorithm can therefore be used to implement the optimal control for Problem (4.1). The more
complex examples will be challenged.
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Table 1. The optimal results using the enumeration method.

j v∗( j) x( j) J(x j, j)
0 1 (2,1) 14.9094
1 1 (1.3911,-0.2179) 2.9103
2 1 (0.2271,0.1989) 0.1240
3 1 (0.0526,-0.1066) 0.0342
4 1 (-0.0403,0.0137) 0.0058

Table 2. The optimal results using the genetic algorithm.

j v∗( j) x( j) J(x j, j)
0 1 (2,1) 14.8680
1 2 (1.3911,-0.2179) 3.7750
2 2 (0.2271,0.1989) 0.2530
3 1 (0.0526,-0.1066) 0.0500
4 1 (-0.0403,0.0137) 0.0011

Example 6.2. In this example, we consider the uncertain discrete-time optimal control Problem (4.1)
comprised of five subsystems, ten stages.

Subsystem 1:

x(t + 1) =
[
2 5
1 1

]
x(t) +

(
1
1

)
u(t) + σth(ξt, ηt, t).

Subsystem 2:

x(t + 1) =
[
1 1
2 1

]
x(t) +

(
3
2

)
u(t) + σth(ξt, ηt, t).

Subsystem 3:

x(t + 1) =
[
2 1
1 2

]
x(t) +

(
4
1

)
u(t) + σth(ξt, ηt, t).

Subsystem 4:

x(t + 1) =
[
2 2
1 3

]
x(t) +

(
2
2

)
u(t) + σth(ξt, ηt, t).

Subsystem 5:

x(t + 1) =
[
2 3
3 1

]
x(t) +

(
2
3

)
u(t) + σth(ξt, ηt, t).

In this example, we let x(0) = (2, 1)T , τ = 10, h(ξt, ηt, t) = ξt × ηt, ξt ∼ U(0, 1), ηt ∼ L(0, 1), Rt = 1,

Qt =

[
1 0
0 1

]
, (t = 1, 2, 3, 4, 5), Q f =

[
8 3
3 2

]
, σ =

(
0.01
0.01

)
.
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Then, the optimal switching control and the optimal continuous control of Problem (4.1) are
depicted in this example. Figure 1 shows the trajectory of state variables. Applying genetic algorithm
stated in section 5 yields the results of optimal switching sequence v∗(·) = (2, 4, 2, 2, 2, 2, 2, 2, 2, 1)
which is displayed in Figure 2. Figure 3 presents the optimal continuous control. The state space
trajectories is shown in Figure 4. We can respectively find the optimal matrix A j in H j for each stage,
which is shown in Table 3. The optimal value is J(x0, 0) = 13.3290.

0 1 2 3 4 5 6 7 8 9

Time(sec)

-1

0

1

2
x

1

x
2

Figure 1. The trajectory of state
variables.
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Figure 2. The optimal switching
sequence of subsystems.

0 1 2 3 4 5 6 7 8 9

Time(sec)
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u

Figure 3. The optimal continuous
control.
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Figure 4. The state space trajectories.
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Table 3. The optimal matrix A j of Example 6.2.

j A j

0
(

5.8108 −3.1867
−3.1867 7.1978

)
1

(
6.0913 −3.8159
−3.8159 7.1593

)
2

(
2.4372 0.4006
0.4006 1.1314

)
3

(
2.7016 0.6034
0.6034 1.2869

)
4

(
2.6376 0.5629
0.5629 1.2582

)
5

(
2.5316 0.4705
0.4705 1.1843

)
6

(
2.6241 0.5332
0.5332 1.2417

)
7

(
−1.3911 −0.8950
−0.8950 0.7183

)
8

(
3.989 7.42
7.42 20.6

)
9

(
8 3
3 2

)

Example 6.3. In this example, we consider the uncertain discrete-time optimal control Problem (4.1)
comprised of five subsystems, which is similar to the Example 6.2, but the difference is that uncertain
random variable h(ξt, ηt, t) = ξt + ηt.

Subsystem 1:

x(t + 1) =
[
2 3
1 1

]
x(t) +

(
1
1

)
u(t) + σth(ξt, ηt, t).

Subsystem 2:

x(t + 1) =
[
1 2
2 1

]
x(t) +

(
3
2

)
u(t) + σth(ξt, ηt, t).

Subsystem 3:

x(t + 1) =
[
2 1
1 2

]
x(t) +

(
4
1

)
u(t) + σth(ξt, ηt, t).

Subsystem 4:

x(t + 1) =
[
2 2
1 3

]
x(t) +

(
2
2

)
u(t) + σth(ξt, ηt, t).
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Subsystem 5:

x(t + 1) =
[
2 3
3 1

]
x(t) +

(
2
3

)
u(t) + σth(ξt, ηt, t).

The optimal switching control and the optimal continuous control of Problem (4.1) are depicted in
this example. The trajectory of state variables is shown in the Figure 5. Figure 6 shows the optimal
switching sequence v∗(·) = (2, 4, 5, 2, 2, 2, 2, 2, 2, 1). Figure 7 presents the optimal continuous control.
The state space trajectories is shown in Figure 8. We can respectively find the optimal matrix A j in H j

for each stage , which is shown in Table 4. The optimal value is J(x0, 0) = 13.7860.
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Figure 5. The trajectory of state
variables.
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Figure 6. The optimal switching
sequence of subsystems.
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Figure 7. The optimal continuous
control.
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Figure 8. The state space trajectories.
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Table 4. The optimal matrix A j of Example 6.3.

j A j

0
(

6.0913 −3.8159
−3.8159 7.1593

)
1

(
−11.0982 −6.2216
−6.2216 20.3842

)
2

(
3.5024 −0.3987
−0.3987 1.4655

)
3

(
3.4036 −0.4034
−0.4034 1.4244

)
4

(
3.2658 −0.4343
−0.4343 1.3612

)
5

(
4.0501 −0.7173
−0.7173 1.2435

)
6

(
3.9058 −0.1397
−0.1397 2.0140

)
7

(
5.3386 −0.3105
−0.3105 1.5567

)
8

(
3.989 4.466
4.466 7.804

)
9

(
8 3
3 2

)

7. Conclusions

In this paper, we study the optimal control problem of uncertain random multistage switching
systems and propose methods for designing the switching laws and continuous control strategies. The
analytical solution of the optimal strategy and the optimal objective function can be described exactly
by H j, whose magnitude varies with the length of the control time domain. The genetic algorithm is
applied to obtain the optimal control and optimal values. The effectiveness of the method is verified
with examples.
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