Integral equations play a crucial role in many scientific and engineering problems, though solving them is often challenging. This paper addresses the solution of multi-dimensional systems of mixed Volterra-Fredholm integral equations (SMVF-IEs) by means of a Legendre-Gauss-Lobatto collocation method. The one-dimensional case is addressed first. Afterwards, the method is extended to two-dimensional linear and nonlinear SMVF-IEs. Several numerical examples reveal the effectiveness of the approach and show its superiority in comparison to other alternative techniques for treating SMVF-IEs.
Citation: A. Z. Amin, M. A. Abdelkawy, Amr Kamel Amin, António M. Lopes, Abdulrahim A. Alluhaybi, I. Hashim. Legendre-Gauss-Lobatto collocation method for solving multi-dimensional systems of mixed Volterra-Fredholm integral equations[J]. AIMS Mathematics, 2023, 8(9): 20871-20891. doi: 10.3934/math.20231063
Integral equations play a crucial role in many scientific and engineering problems, though solving them is often challenging. This paper addresses the solution of multi-dimensional systems of mixed Volterra-Fredholm integral equations (SMVF-IEs) by means of a Legendre-Gauss-Lobatto collocation method. The one-dimensional case is addressed first. Afterwards, the method is extended to two-dimensional linear and nonlinear SMVF-IEs. Several numerical examples reveal the effectiveness of the approach and show its superiority in comparison to other alternative techniques for treating SMVF-IEs.
[1] | A. M. Wazwaz, Linear and nonlinear integral equations, Vol. 639, Springer, 2011. |
[2] | A. M. Wazwaz, First course in integral equations, A, World Scientific Publishing Company, 2015. |
[3] | E. Babolian, M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl., 62 (2011), 187–198. https://doi.org/10.1016/j.camwa.2011.04.066 doi: 10.1016/j.camwa.2011.04.066 |
[4] | W. J. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, Appl. Numer. Math., 59 (2009), 1709–1719. https://doi.org/10.1016/j.apnum.2009.01.009 doi: 10.1016/j.apnum.2009.01.009 |
[5] | M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Fractional-order shifted legendre collocation method for solving non-linear variable-order fractional fredholm integro-differential equations, Comput. Appl. Math., 41 (2022), 2. https://doi.org/10.1007/s40314-021-01702-4 doi: 10.1007/s40314-021-01702-4 |
[6] | Y. Khan, K. Sayevand, M. Fardi, M. Ghasemi, A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations, Appl. Math. Comput., 249 (2014), 229–236. https://doi.org/10.1016/j.amc.2014.10.070 doi: 10.1016/j.amc.2014.10.070 |
[7] | A. Shidfar, A. Molabahrami, Solving a system of integral equations by an analytic method, Math. Comput. Model., 54 (2011), 828–835. https://doi.org/10.1016/j.mcm.2011.03.031 doi: 10.1016/j.mcm.2011.03.031 |
[8] | A. Kouibia, M. Pasadas, M. L. Rodriguez, A variational method for solving Fredholm integral systems, Appl. Numer. Math., 62 (2012), 1041–1049. https://doi.org/10.1016/j.apnum.2011.11.006 doi: 10.1016/j.apnum.2011.11.006 |
[9] | M. Eckert, M. Kupper, S. Hohmann, Functional fractional calculus for system identification of battery cells, at–Automatisierungstechnik, 62 (2014), 272–281. https://doi.org/10.1515/auto-2014-1083 doi: 10.1515/auto-2014-1083 |
[10] | M. Javidi, A. Golbabai, A numerical solution for solving system of Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., 189 (2007), 1921–1928. https://doi.org/10.1016/j.amc.2006.12.070 doi: 10.1016/j.amc.2006.12.070 |
[11] | M. Javidi, Modified homotopy perturbation method for solving system of linear Fredholm integral equations, Math. Comput. Model., 50 (2009), 159–165. https://doi.org/10.1016/j.mcm.2009.02.003 doi: 10.1016/j.mcm.2009.02.003 |
[12] | F. Liang, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on piecewise polynomial interpolation, Appl. Math. Comput., 216 (2010), 3073–3088. https://doi.org/10.1016/j.amc.2010.04.027 doi: 10.1016/j.amc.2010.04.027 |
[13] | J. Saberi-Nadjafi, M. Tamamgar, The variational iteration method: a highly promising method for solving the system of integro-differential equations, Comput. Math. Appl., 56 (2008), 346–351. https://doi.org/10.1016/j.camwa.2007.12.014 doi: 10.1016/j.camwa.2007.12.014 |
[14] | J. Biazar, B. Ghanbari, M. G. Porshokouhi, M. G. Porshokouhi, He's homotopy perturbation method: a strongly promising method for solving non-linear systems of the mixed Volterra-Fredholm integral equations, Comput. Math. Appl., 61 (2011), 1016–1023. https://doi.org/10.1016/j.camwa.2010.12.051 doi: 10.1016/j.camwa.2010.12.051 |
[15] | E. Babolian, N. Dastani, He's homotopy perturbation method: an effective tool for solving a nonlinear system of two-dimensional Volterra-Fredholm integral equations, Math. Comput. Model., 55 (2012), 1233–1244. https://doi.org/10.1016/j.mcm.2011.10.003 doi: 10.1016/j.mcm.2011.10.003 |
[16] | N. Akkurt, T. Shedd, A. A. Memon, Usman, M. R. Ali, M. Bouye, Analysis of the forced convection via the turbulence transport of the hybrid mixture in three-dimensional L-shaped channel, Case Stud. Therm. Eng., 41 (2023), 102558. https://doi.org/10.1016/j.csite.2022.102558 doi: 10.1016/j.csite.2022.102558 |
[17] | K. F. Al Oweidi, F. Shahzad, W. Jamshed, R. W. Ibrahim, E. S. M. Tag El Din, A. M. AlDerea, Partial differential equations of entropy analysis on ternary hybridity nanofluid flow model via rotating disk with hall current and electromagnetic radiative influences, Sci. Rep., 12 (2022), 20692. https://doi.org/10.1038/s41598-022-24895-y doi: 10.1038/s41598-022-24895-y |
[18] | F. Caliò, A. I. Garralda-Guillem, E. Marchetti, M. Ruiz Galán, Numerical approaches for systems of Volterra-Fredholm integral equations, Appl. Math. Comput., 225 (2013), 811–821. https://doi.org/10.1016/j.amc.2013.10.006 doi: 10.1016/j.amc.2013.10.006 |
[19] | M. Ghasemi, M. Fardi, R. Khoshsiar Ghaziani, Solution of system of the mixed Volterra-Fredholm integral equations by an analytical method, Math. Comput. Model., 58 (2013), 1522–1530. https://doi.org/10.1016/j.mcm.2013.06.006 doi: 10.1016/j.mcm.2013.06.006 |
[20] | S. Goud Bejawada, Y. D. Reddy, W. Jamshed, Usman, S. S. P. M. Isa, S. M. El Din, et al., Comprehensive examination of radiative electromagnetic flowing of nanofluids with viscous dissipation effect over a vertical accelerated plate, Sci. Rep., 12 (2022), 20548. https://doi.org/10.1038/s41598-022-25097-2 doi: 10.1038/s41598-022-25097-2 |
[21] | S. Shaheen, M. B. Arain, K. S. Nisar, A. Albakri, M. D. Shamshuddin, F. O. Mallawi, et al., A case study of heat transmission in a Williamson fluid flow through a ciliated porous channel: a semi-numerical approach, Case Stud. Therm. Eng., 41 (2023), 102523. https://doi.org/10.1016/j.csite.2022.102523 doi: 10.1016/j.csite.2022.102523 |
[22] | S. U. Khan, Usman, A. Raza, A. Kanwal, K. Javid, Mixed convection radiated flow of Jeffery-type hybrid nanofluid due to inclined oscillating surface with slip effects: a comparative fractional model, Waves Random Complex Media, 2022, 1–22. https://doi.org/10.1080/17455030.2022.2122628 doi: 10.1080/17455030.2022.2122628 |
[23] | Usman, M. M. Bhatti, A. Ghaffari, M. H. Doranehgard, The role of radiation and bioconvection as an external agent to control the temperature and motion of fluid over the radially spinning circular surface: a theoretical analysis via chebyshev spectral approach, Math. Methods Appl. Sci., 46 (2022), 11523–11540. https://doi.org/10.1002/mma.8085 doi: 10.1002/mma.8085 |
[24] | C. Wu, Z. Wang, The spectral collocation method for solving a fractional integro-differential equation, AIMS Math., 7 (2022), 9577–9587. https://doi.org/10.3934/math.2022532 doi: 10.3934/math.2022532 |
[25] | Y. Talaei, S. Micula, H. Hosseinzadeh, S. Noeiaghdam, A novel algorithm to solve nonlinear fractional quadratic integral equations, AIMS Math., 7 (2022), 13237–13257. https://doi.org/10.3934/math.2022730 doi: 10.3934/math.2022730 |
[26] | A. Z. Amin, A. K. Amin, M. A. Abdelkawy, A. A. Alluhaybi, I. Hashim, Spectral technique with convergence analysis for solving one and two-dimensional mixed volterra-fredholm integral equation, Plos One, 18 (2023), e0283746. https://doi.org/10.1371/journal.pone.0283746 doi: 10.1371/journal.pone.0283746 |
[27] | E. H. Doha, R. M. Hafez, M. A. Abdelkawy, S. S. Ezz-Eldien, T. M. Taha, M. A. Zaky, et al., Composite bernoulli-laguerre collocation method for a class of hyperbolic telegraph-type equations, Rom. Rep. Phys., 69 (2017), 119. |
[28] | M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions, J. Sci. Comput., 82 (2020), 1–27. https://doi.org/10.1007/s10915-019-01117-8 doi: 10.1007/s10915-019-01117-8 |
[29] | A. S. Hendy, M. A. Zaky, Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math., 156 (2020), 276–302. https://doi.org/10.1016/j.apnum.2020.05.002 doi: 10.1016/j.apnum.2020.05.002 |
[30] | E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, D. Baleanu, Spectral technique for solving variable-order fractional Volterra integro-differential equations, Numer. Methods Part. Differ. Equ., 34 (2018), 1659–1677. https://doi.org/10.1002/num.22233 doi: 10.1002/num.22233 |
[31] | A. Z. Amin, M. A. Zaky, A. S. Hendy, I. Hashim, A. Aldraiweesh, High-order multivariate spectral algorithms for high-dimensional nonlinear weakly singular integral equations with delay, Mathematics, 10 (2022), 3065. https://doi.org/10.3390/math10173065 doi: 10.3390/math10173065 |
[32] | A. Z. Amin, M. A. Abdelkawy, I. Hashim, A space-time spectral approximation for solving nonlinear variable-order fractional convection-diffusion equations with nonsmooth solutions, Int. J. Mod. Phys. C, 2022, 2350041, |
[33] | M. A. Abdelkawy, A. Z. M. Amin, A. H. Bhrawy, J. A. Tenreiro Machado, A. M. Lopes, Jacobi collocation approximation for solving multi-dimensional Volterra integral equations, Int. J. Nonlinear Sci. Numer. Simul., 18 (2017), 411–425. https://doi.org/10.1515/ijnsns-2016-0160 doi: 10.1515/ijnsns-2016-0160 |
[34] | E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, On spectral methods for solving variable-order fractional integro-differential equations, Comput. Appl. Math., 37 (2018), 3937–3950. https://doi.org/10.1007/s40314-017-0551-9 doi: 10.1007/s40314-017-0551-9 |
[35] | A. H. Bhrawy, M. A. Abdelkawy, D. Baleanu, A. Z. M. Amin, A spectral technique for solving two-dimensional fractional integral equations with weakly singular kernel, Hacet. J. Math. Stat., 47 (2018), 553–566. |
[36] | A. Z. Amin, A. M. Lopes, I. Hashim, A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley-Torvik differential equation, Int. J. Nonlinear Sci. Numer. Simul., 2022. https://doi.org/10.1515/ijnsns-2021-0395 doi: 10.1515/ijnsns-2021-0395 |
[37] | J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005 |
[38] | M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525–3538. https://doi.org/10.1007/s40314-017-0530-1 doi: 10.1007/s40314-017-0530-1 |
[39] | M. A. Zaky, An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243–2258. https://doi.org/10.1016/j.camwa.2017.12.004 doi: 10.1016/j.camwa.2017.12.004 |
[40] | A. H. Bhrawy, M. A. Zaky, J. A. T. Machado, Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation, J. Optim. Theory. Appl., 174 (2017), 321–341. https://doi.org/10.1007/s10957-016-0863-8 doi: 10.1007/s10957-016-0863-8 |
[41] | W. M. Abd-Elhameed, Y. H. Youssri, Spectral tau solution of the linearized time-fractional KdV-type equations, AIMS Math., 7 (2022), 15138–15158. https://doi.org/10.3934/math.2022830 doi: 10.3934/math.2022830 |
[42] | E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Shifted fractional legendre spectral collocation technique for solving fractional stochastic volterra integro-differential equations, Eng. Comput., 38 (2022), 1363–1373. https://doi.org/10.1007/s00366-020-01263-w doi: 10.1007/s00366-020-01263-w |
[43] | W. Shao, X. Wu, An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations, Appl. Math. Model., 39 (2015), 2554–2569. https://doi.org/10.1016/j.apm.2014.10.048 doi: 10.1016/j.apm.2014.10.048 |
[44] | X. Ma, C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model., 38 (2014), 1434–1448. https://doi.org/10.1016/j.apm.2013.08.013 doi: 10.1016/j.apm.2013.08.013 |
[45] | M. R. Eslahchi, M. Dehghan, M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math., 257, 105–128. https://doi.org/10.1016/j.cam.2013.07.044 |
[46] | A. Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, R. Yunus, Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose, J. Comput. Phys., 294 (2015), 562–584. https://doi.org/10.1016/j.jcp.2015.03.011 doi: 10.1016/j.jcp.2015.03.011 |
[47] | B. Soltanalizadeh, H. Roohani Ghehsareh, S. Abbasbandy, A super accurate shifted tau method for numerical computation of the sobolev-type differential equation with nonlocal boundary conditions, Appl. Math. Comput., 236 (2014), 683–692. https://doi.org/10.1016/j.amc.2014.03.044 doi: 10.1016/j.amc.2014.03.044 |
[48] | Y. Yin, Y. Chen, Y. Huang, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci., 34 (2014), 673–690. https://doi.org/10.1016/S0252-9602(14)60039-4 doi: 10.1016/S0252-9602(14)60039-4 |
[49] | A. H. Bhrawy, E. H. Doha, M. A. Abdelkawy, R. M. Hafez, An efficient collocation algorithm for multidimensional wave type equations with nonlocal conservation conditions, Appl. Math. Model., 39 (2015), 5616–5635. https://doi.org/10.1016/j.apm.2015.01.029 doi: 10.1016/j.apm.2015.01.029 |
[50] | X. Zhang, Jacobi spectral method for the second-kind Volterra integral equations with a weakly singular kernel, Appl. Math. Model., 39 (2015), 4421–4431. https://doi.org/10.1016/j.apm.2014.12.046 doi: 10.1016/j.apm.2014.12.046 |
[51] | J. Shen, T. Tang, L. L. Wang, Spectral methods: algorithms, analysis and applications, Vol. 41, Springer Science & Business Media, 2011. |
[52] | A. Z. Amin, A. M. Lopes, I. Hashim, A space-time spectral collocation method for solving the variable-order fractional fokker-planck equation, J. Appl. Anal. Comput., 13 (2023), 969–985. |
[53] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: fundamentals in single domains, Springer Science & Business Media, 2007. |
[54] | M. A. Zaky, I. G. Ameen, N. A. Elkot, E. H. Doha, A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl. Numer. Math., 161 (2021), 27–45. https://doi.org/10.1016/j.apnum.2020.10.028 doi: 10.1016/j.apnum.2020.10.028 |