FPCA [18] at | New method at | |||
N=6 | N=4 | N=6 | N=8 | |
Λ1 | 9.53×10−6 | 1.04×10−7 | 2.68×10−12 | 3.73×10−16 |
γ2 | 4.93×10−5 | 8.24×10−9 | 4.55×10−14 | 3.26×10−16 |
Integral equations play a crucial role in many scientific and engineering problems, though solving them is often challenging. This paper addresses the solution of multi-dimensional systems of mixed Volterra-Fredholm integral equations (SMVF-IEs) by means of a Legendre-Gauss-Lobatto collocation method. The one-dimensional case is addressed first. Afterwards, the method is extended to two-dimensional linear and nonlinear SMVF-IEs. Several numerical examples reveal the effectiveness of the approach and show its superiority in comparison to other alternative techniques for treating SMVF-IEs.
Citation: A. Z. Amin, M. A. Abdelkawy, Amr Kamel Amin, António M. Lopes, Abdulrahim A. Alluhaybi, I. Hashim. Legendre-Gauss-Lobatto collocation method for solving multi-dimensional systems of mixed Volterra-Fredholm integral equations[J]. AIMS Mathematics, 2023, 8(9): 20871-20891. doi: 10.3934/math.20231063
[1] | Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846 |
[2] | A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud . Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388 |
[3] | Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532 |
[4] | Chuanli Wang, Biyun Chen . An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010 |
[5] | Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog . A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322 |
[6] | Ishtiaq Ali . Long time behavior of higher-order delay differential equation with vanishing proportional delay and its convergence analysis using spectral method. AIMS Mathematics, 2022, 7(4): 4946-4959. doi: 10.3934/math.2022275 |
[7] | Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314 |
[8] | Mehrnoosh Hedayati, Hojjat Ahsani Tehrani, Alireza Fakharzadeh Jahromi, Mohammad Hadi Noori Skandari, Dumitru Baleanu . A novel high accurate numerical approach for the time-delay optimal control problems with delay on both state and control variables. AIMS Mathematics, 2022, 7(6): 9789-9808. doi: 10.3934/math.2022545 |
[9] | Imran Talib, Md. Nur Alam, Dumitru Baleanu, Danish Zaidi, Ammarah Marriyam . A new integral operational matrix with applications to multi-order fractional differential equations. AIMS Mathematics, 2021, 6(8): 8742-8771. doi: 10.3934/math.2021508 |
[10] | Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476 |
Integral equations play a crucial role in many scientific and engineering problems, though solving them is often challenging. This paper addresses the solution of multi-dimensional systems of mixed Volterra-Fredholm integral equations (SMVF-IEs) by means of a Legendre-Gauss-Lobatto collocation method. The one-dimensional case is addressed first. Afterwards, the method is extended to two-dimensional linear and nonlinear SMVF-IEs. Several numerical examples reveal the effectiveness of the approach and show its superiority in comparison to other alternative techniques for treating SMVF-IEs.
Integral equations [1,2,3,4,5] can accurately describe many different phenomena in engineering and science. Although there are several powerful techniques to numerically solve integral equations, most reveal limitations with multi-dimensional problems. The systems of mixed Volterra-Fredholm integral equations (SMVF-IEs) [6,7,8,9,10,11,12] appear in the scope of parabolic boundary value models, including in physics, mathematics, biology, and other subjects. The solution of SMVF-IEs has been a matter of substantial interest. However, solving SMVF-IEs is a challenging issue, for which effective methods are still lacking. Population dynamics, parabolic boundary value problems, spatio-temporal evolution of epidemics, and other phenomena lead to SMVF-IE-based models.
In reference [13], a variational iteration technique was proposed for solving systems of integro-differential equations. In paper [14], a homotopy perturbation technique was utilized to numerically solve nonlinear SMVF-IEs, while in [15], it was adopted to solve nonlinear two-dimensional SMVF-IEs. In [16], hybrid mixtures were used to solve the three-dimensional L-shaped channel problem and to analyze the properties of heat generation via forced convection. In [17], the Keller Box approach was utilized to simulate nonlinear problems encountered in developing liquid and supplementary algebraic dynamics domains. In [18,19], numerical and analytical methods were developed to address SMVF-IEs. In [20], the Galerkin finite element method was used to find a closed-form solution for a nonlinear coupled partial differential equation, whereas the author in [21] used a quasi-digital technology called the differential transformation method to address the control of complex PDE devices. In [22], the Caputo–Fabrizio and Atangana–Baleanu techniques were used to solve fractional dimensionless systems, and performed a theoretical analysis via the Chebyshev spectral approach [23].
Spectral methods are effective for solving several types of differential and integral problems [24,25,26,27]. Particular kinds of spectral approaches include the Galerkin [28,29], collocation [30,31,32,33,34,35,36,37] and tau techniques [39,40,41,42]. Contrasting with other approaches, namely the finite difference and finite element methods, spectral techniques achieve superior accuracy, even with few nodes, thus involving a smaller computational burden. Indeed, they are characterized by exponential convergence rates. The main idea is to express the solution to the original equation by a finite sum of a certain basis function, and then to choose the functions' coefficients such that the error between the exact and the numerical solutions is minimized. In the spectral collocation variant [43,44,45,46,47,48,49,50], the numerical solution is compelled to closely satisfy the original problem, thus the residuals may approach zero at specific collocation points.
This paper addresses the solution of SMVF-IEs by means of a Legendre-Gauss-Lobatto collocation method. The one-dimensional case is firstly treated. Afterwards, the method is extended to two-dimensional linear and nonlinear SMVF-IEs. Several numerical examples are presented to demonstrate the effectiveness of the approach, and to illustrate its superiority in comparison with alternative techniques for solving SMVF-IEs.
The paper is organized into sections. In section 2, some mathematical preliminaries are outlined. In section 3, one-dimensional SMVF-IEs are solved. In section 4, the novel algorithm is extended for solving two-dimensional SMVF-IEs. In section 5, error analysis of the method is addressed. In section 6, some numerical examples assess and compare the proposed approach with other techniques. In section 7, the main conclusions are summarized.
The Legendre polynomials Lȷ(ϱ) (ȷ=0,1…) comply with the Rodrigues' expression [51]:
Lȷ(ϱ)=(−1)ȷ2ȷȷ!Dȷ((1−ϱ2)ȷ), | (2.1) |
where ȷ stands for degree.
Accordingly, the n1th derivative of Lȷ(ϱ), denoted by Ln1ȷ(ϱ), is given by the following:
Ln1ȷ(ϱ)=ȷ−n1∑i=0(i+ȷ=even)Cn1(ȷ,i)Li(ϱ), | (2.2) |
where
CL(ȷ,i)=2n1−1(2i+1)Γ(n1+ȷ−i2)Γ(n1+ȷ+i+12)Γ(n1)Γ(2−n1+ȷ−i2)Γ(3−n1+ȷ+i2). |
Let us denote the norm and inner product by ‖Λ‖ and (Λ,γ), respectively, of space L2[−1,1]. The collection of L(ϱ) is a whole orthogonal system in L2[−1,1] [52]
(Lj1(ϱ),Lȷ(ϱ))=1∫−1Lj1(ϱ)Lȷ(ϱ) dϱ=hȷδj1ȷ, | (2.3) |
where hi=22i+1, and δj1ȷ is the Dirac function. Hence, for each γ∈L2[−1,1],
γ(ϱ)=∞∑i=0aiLi(ϱ),ai=1hi1∫−1γ(ϱ)Li(ϱ) dϱ. | (2.4) |
Assume that SN1[−1,1] is a collection of all polynomials of degree at the utmost N1 (N1≥0). Hence, for each φ∈S2N1−1[−1,1], we have
1∫−1φ(ϱ)dϱ=N1∑i=0ϖN1,iφ(ϱN1,i), | (2.5) |
where ϱN1,ȷ (0≤ȷ≤N1) and ϖN1,ȷ (0≤ȷ≤N1) are the nodes and Christoffel numbers of the Legendre-Gauss-Lobatto interpolation on the classical interval [−1,1], respectively. The discrete norm and inner product correspond to
‖Λ‖N1=(Λ,γ)12N1,(Λ,γ)N1=N1∑j=0Λ(ϱN1,j1)γ(ϱN1,j1)ϖN1,j1. | (2.6) |
Denote the shifted Legendre polynomials specified on the interval [0,L] by LL,ȷ(ϱ). These polynomials are obtained by the recurrence [51]
(j1+1)LL,ȷ+1(ϱ)=(2ȷ+1)(2ϱL−1)LL,ȷ(ϱ)−j1LL,ȷ−1(ϱ),ȷ=1,2,⋯. | (2.7) |
Then, we can write
LL,j1(ϱ)=j∑ȷ=0(−1)j1+ȷ(j1+ȷ)!(j1−ȷ)! (ȷ!)2Lȷ ϱȷ. | (2.8) |
The integral IνLL,j1(ϱ) may be obtained from
IνLL,j1(ϱ)=j1∑ȷ=0 (−1)ȷ+j1 (ȷ+j1)!(−ȷ+j1)! (ȷ!)2 σȷ Iνϱȷ=j1∑ȷ=0(−1)ȷ+j1 (ȷ+j1)! ȷ!(−ȷ+j1)! (ȷ!)2 σȷ Γ(ȷ+ν+1) ϱȷ+ν,j1=0,1,⋯,N1, | (2.9) |
where LL,j1(0)=(−1)j1. The equation of the orthogonality condition is
∫L0LL,j1(ϱ)LL,ȷ(ϱ)wL(ϱ) dϱ=hLȷδj1ȷ, | (2.10) |
where wL(ϱ)=1 and hLȷ=L2ȷ+1.
If function Λ(σ)∈L2[0,L], then it can be expressed by LL,i(σ) as
Λ(σ)=∞∑i=0ciLL,i(σ), |
with ci given by
ci=1hLi∫L0Λ(σ)LL,i(σ)dϱ,i=0,1,2,⋯. | (2.11) |
In the approximation, Λ(ϱ) can be written as
ΛN1(t)≃N1∑i=0ciLL,i(σ). | (2.12) |
Let us consider the one-dimensional SMVF-IEs
{Λ(ϱ)=Δ1(ϱ)+ϱ∫0ȷ1(ϱ,σ)Λ(σ)dσ+L∫0ȷ2(ϱ,σ)Λ(σ)dσ,γ(ϱ)=Δ2(ϱ)+ϱ∫0ȷ3(ϱ,σ)γ(σ)dσ+L∫0ȷ4(ϱ,σ)γ(σ)dσ,x∈[0,L], | (3.1) |
where Δ1(ϱ), Δ2(ϱ), ȷ1(ϱ,σ), ȷ2(ϱ,σ), ȷ3(ϱ,σ) and ȷ4(ϱ,σ) are given as real valued functions, while Λ(ϱ) and γ(ϱ) are unknown functions.
Using σ=ϱLη to write the integrals ϱ∫0ȷ1(ϱ,σ)Λ(σ)dσ, ϱ∫0ȷ3(ϱ,σ)Λ(σ)dσ in the interval [0,L], for the variable η, we perform the shifted Legendre-Gauss-Lobatto integration
{Λ(ϱ)=Δ1(ϱ)+ϱLL∫0ȷ1(ϱ,ϱLη)Λ(ϱLη)dη+L∫0ȷ2(ϱ,σ)Λ(σ)dσ,γ(ϱ)=Δ2(ϱ)+ϱLL∫0ȷ3(ϱ,ϱLη)γ(ϱLη)dη+L∫0ȷ4(ϱ,σ)γ(σ)dσ,ϱ∈[0,L]. | (3.2) |
We rely on the shifted Legendre-Gauss-Lobatto collocation technique to turn the previous SMVF-IEs into a system of algebraic equations. Thus, we collocate independent variables at ϱL,N1,j1 points, yielding the approximate solution
ΛN1(ϱ)=N1∑j1=0aj1LL,j1(ϱ),γN1(ϱ)=N1∑j1=0bj1LL,j1(ϱ). | (3.3) |
Assume SN1(0,L) is the collection of all polynomials of degree at utmost N1 for any positive integer N1. It follows for each ϕ∈S2N1−1(0,L), based on the shifted Legendre-Gauss-Lobatto quadrature,
∫L0ϕ(ϱ)dϱ=N1∑i=0ϖL,N1,iϕ(ϱL,N1,i), | (3.4) |
where ϖL,N1,i are known on the interval [0, L], meaning the Christoffel numbers of the shifted Legendre-Gauss-Lobatto interpolation.
Based on Eqs (3.3) and (3.4), one can write Eq (3.2) as
{N1∑j1=0aj1LL,j1(ϱ)=Δ1(ϱ)+ϱLN1∑i=0N1∑j1=0aj1ϖL,N1,iȷ1(ϱ,ϱLϱL,N1,i)LL,j1(ϱLϱL,N1,i)+N1∑i=0N1∑j1=0aj1ϖL,N1,iȷ2(ϱ,ϱL,N1,i)LL,j1(ϱL,N1,i),N1∑j=0bj1LL,j1(ϱ)=Δ2(ϱ)+ϱLN1∑i=0N1∑j1=0aj1ϖL,N1,iȷ3(ϱ,ϱLϱL,N1,i)LL,j1(ϱLϱL,N1,i)+N1∑i=0N1∑j1=0aj1ϖL,N1,iȷ4(ϱ,ϱL,N1,i)LL,j1(ϱL,N1,i). | (3.5) |
In the shifted Legendre-Gauss-Lobatto collocation technique presented herein, the residual of (3.5) is made zero at the N1+1 shifted Legendre-Gauss points
{N1∑j1=0aj1LL,j1(ϱL,N1,n1)=ϱL,N1,n1LN1∑i=0N1∑j1=0aj1ϖL,N1,iȷ1(ϱL,N1,n1,ϱL,N1,n1LϱL,N1,i)LL,j1(ϱL,N1,n1LϱL,N1,i)+Δ1(ϱL,N1,n1)+N1∑i=0N1∑j1=0aj1ϖL,N1,iȷ2(ϱL,N1,n1,ϱL,N1,i)LL,j1(ϱL,N1,i),N1∑j1=0bj1LL,j1(ϱL,N1,n1)=ϱL,N1,n1LN1∑i=0N1∑j1=0aj1ϖL,N1,iȷ3(ϱL,N1,n1,ϱL,N1,n1LϱL,N1,i)LL,j1(ϱL,N1,n1LϱL,N1,i)+Δ2(ϱL,N1,n1)+N1∑i=0N1∑j1=0aj1ϖL,N1,iȷ4(ϱL,N1,n1,ϱL,N1,i)LL,j1(ϱL,N1,i),wheren1=0,…,N1. | (3.6) |
After the coefficients aj,bj are specified, the approximate solution ΛN1(ϱ),γN1(ϱ) at any value of ϱ∈[0,L] in the specific domain can be easily computed from the equations
ΛN1(ϱ)=N1∑j1=0aj1LL,j1(ϱ),γN1(ϱ)=N1∑j1=0bj1LL,j1(ϱ). | (3.7) |
The preceding numerical algorithm is extended to solve linear and nonlinear two-dimensional SMVF-IEs. The collocation points are chosen at the shifted Legendre-Gauss-Lobatto interpolation nodes. The idea is to discretize the SMVF-IEs and to construct a system of algebraic equations.
Let us consider the two dimensional SMVF-IEs
{Λ(ϱ,σ)=Δ1(ϱ,σ)+σ∫0L∫0ȷ1(ϱ,σ,χ,ψ)Λ(χ,ψ)dχdψ,γ(ϱ,σ)=Δ2(ϱ,σ)+σ∫0L∫0ȷ2(ϱ,σ,χ,ψ)γ(χ,ψ)dχdψ,(ϱ,σ)∈[0,L]×[0,τ], | (4.1) |
where Λ(ϱ,σ) and γ(ϱ,σ) are unknown functions, whilst Δ1(ϱ,σ),Δ2(ϱ,σ),ȷ1(ϱ,σ) and ȷ2(ϱ,σ,χ,ψ), are given as real valued functions.
Using the change of variable ψ=στη, we can transform the integrals σ∫0L∫0ȷ1(ϱ,σ,χ,ψ)Λ(χ,ψ)dχdψ, σ∫0L∫0ȷ2(ϱ,σ,χ,ψ)γ(χ,ψ)dχdψ, into the interval, [0,τ], for the variable η, to immediately execute the shifted Legendre-Gauss-Lobatto integration,
{Λ(ϱ,σ)=Δ1(ϱ,σ)+σττ∫0L∫0ȷ1(ϱ,σ,χ,στη)Λ(χ,στη)dχdη,γ(ϱ,σ)=Δ2(ϱ,σ)+σττ∫0L∫0ȷ2(ϱ,σ,χ,στη)γ(χ,στη)dχdη,(ϱ,σ)∈[0,L]×[0,τ]. | (4.2) |
We extend the dependent variable by the model
ΛN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0aij1Lτ,i(σ)LL,j1(ϱ),γN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0bij1Lτ,i(σ)LL,j1(ϱ). | (4.3) |
In virtue of the Eqs (4.3) and (3.4), we can rewrite Eq (4.2) as
{N2∑i=0N1∑j1=0aij1Lτ,i(σ)LL,j1(ϱ)=N2∑i=0N1∑j1=0aij1χi,j1(ϱ,σ)+Δ1(ϱ,σ),N2∑i=0N1∑j1=0bij1Lτ,i(σ)LL,j1(ϱ)=N2∑i=0N1∑j1=0bij1ψi,j1(ϱ,σ)+Δ2(ϱ,σ),(ϱ,σ)∈[0,L]×[0,τ], | (4.4) |
where
χi,j1(ϱ,σ)=στN1∑r=0N2∑s=0ϖL,N1,rϖτ,N2,sȷ1(ϱ,σ,χL,N1,r,στητ,N2,s)Lτ,i(στητ,N2,s)LL,j1(χL,N1,r), |
ψi,j1(ϱ,σ)=στN1∑r=0N2∑s=0ϖL,N1,rϖτ,N2,sȷ2(ϱ,σ,χL,N1,r,στητ,N2,s)Lτ,i(στητ,N2,s)LL,j1(χL,N1,r). |
The residual of (4.4) is set to be zero in the suggested shifted Legendre-Gauss-Lobatto collocation technique at (N1+1)×(N2+1) of shifted Legendre-Gauss-Lobatto points
N2∑i=0N1∑j1=0aij1Lτ,i(στ,N2,n2)LL,j1(ϱL,N1,n1)=N2∑i=0N1∑j1=0aij1χi,j1(ϱL,N1,n1,στ,N2,n2)+Δ1(ϱL,N1,n1,στ,N2,n2),N2∑i=0N1∑j1=0bij1Lτ,i(στ,N2,n2)LL,j1(ϱL,N1,n1)=N2∑i=0N1∑j1=0bij1ψi,j1(ϱL,N1,n1,στ,N2,n2)+Δ2(ϱL,N1,n1,στ,N2,n2), | (4.5) |
where n1=0,…,N1 and n2=0,…,N2.
Finally, Eq (4.5) is enforced to exactly satisfy (4.1) at the shifted Legendre-Gauss-Lobatto interpolation nodes ϱL,N1,n1,σL,N1,n2. This provides 2(N1+1)(N2+1) equations for ai,j1,bij1;i=0,⋯,N1, j1=0,⋯,N2. Consequently, the approximate solution (4.3) can be evaluated as
ΛN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0aij1Lτ,i(σ)LL,j1(ϱ),γN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0bij1Lτ,i(σ)LL,j1(ϱ). | (4.6) |
We expand the technique for numerically handling nonlinear SMVF-IEs
{Λ(ϱ,σ)=Δ1(ϱ,σ)+σ∫0L∫0ȷ1(ϱ,σ,χ,ψ,Λ(χ,ψ),γ(χ,ψ))dχdψ,γ(ϱ,σ)=Δ2(ϱ,σ)+σ∫0L∫0ȷ2(ϱ,σ,χ,ψ,Λ(χ,ψ),γ(χ,ψ))dχdψ,(ϱ,σ)∈[0,L]×[0,τ], | (4.7) |
where Λ(ϱ,σ) and γ(ϱ,σ) are unknown functions, whilst f(ϱ,σ), k(ϱ,σ,χ,ψ,(Λ(χ,ψ))),ȷ1(ϱ,σ,χ,ψ,Λ(χ,ψ),(γ(χ,ψ))) and ȷ2(ϱ,σ,χ,ψ,Λ(χ,ψ),γ(χ,ψ)) are given as functions.
Using the change of variable ψ=στη, we can transform the integrals σ∫0L∫0ȷ1(ϱ,σ,χ,ψ)Λ(χ,ψ)dχdψ, σ∫0L∫0ȷ2(ϱ,σ,χ,ψ)γ(χ,ψ)dχdψ, into the interval, [0,τ], for the variable η, and apply the shifted Legendre-Gauss-Lobatto integration
{Λ(ϱ,σ)=Δ1(ϱ,σ)+σττ∫0L∫0ȷ1(ϱ,σ,χ,στη,Λ(χ,στη),γ(χ,στη))dχdη,γ(ϱ,σ)=Δ2(ϱ,σ)+σττ∫0L∫0ȷ2(ϱ,σ,χ,στη,Λ(ψχ,στη),γ(χ,στη))dχdη,(ϱ,σ)∈[0,L]×[0,τ]. | (4.8) |
We select the approximate solution from the model
ΛN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0aij1Lτ,i(σ)LL,j1(ϱ),γN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0bij1Lτ,i(σ)LL,j1(ϱ). | (4.9) |
Proceeding as in the previous subsection, we can rewrite the problem in the form
{N2∑i=0N1∑j1=0aij1Lτ,i(σ)LL,j1(ϱ)=στN1∑r=0N2∑s=0ϖL,N1,rϖτ,N2,sȷ1(ϱ,σ,χL,N1,r,στητ,N2,s,δr,s(σ),λr,s(σ))+Δ1(ϱ,σ),N2∑i=0N1∑j1=0bij1Lτ,i(σ)LL,j1(ϱ)=στN1∑r=0N2∑s=0ϖL,N1,rϖτ,N2,sȷ2(ϱ,σ,χL,N1,r,στητ,N2,s,δr,s(σ),λr,s(σ))+Δ2(ϱ,σ),(ϱ,σ)∈[0,L]×[0,τ], | (4.10) |
where
δr,s(σ)=N2∑i=0N1∑j1=0aij1Lτ,i(στητ,N2,s)LL,j1(χL,N1,r), |
λr,s(σ)=N2∑i=0N1∑j1=0bij1Lτ,i(στητ,N2,s)LL,j1(χL,N1,r). |
The residual of (4.10) is set to be zero at (N1+1)×(N2+1) for the shifted Legendre-Gauss-Lobatto points
N2∑i=0N1∑j1=0aij1Lτ,i(στ,N2,n2)LL,j1(ϱL,N1,n1)=ξn2,n1+Δ1(ϱL,N1,n1,στ,N2,n2),N2∑i=0N1∑j1=0bij1Lτ,i(στ,N2,n2)LL,j1(ϱL,N1,n1)=ζn2,n1+Δ2(ϱL,N1,n1,στ,N2,n2), | (4.11) |
where
ξn2,n1=στ,N2,n2τN1∑r=0N2∑s=0ϖL,N1,rϖτ,N2,sȷ1×(ϱL,N1,n1,στ,N2,n2,χL,N1,r,στ,N2,n2τητ,N2,s,δr,s(στ,N2,n2),λr,s(στ,N2,n2)), | (4.12) |
ζn2,n1=στ,N2,n2τN1∑r=0N2∑s=0ϖL,N1,rϖτ,N2,sȷ2×(ϱL,N1,n1,στ,N2,n2,χL,N1,r,στ,N2,n2τητ,N2,s,δr,s(στ,N2,n2),λr,s(στ,N2,n2)), | (4.13) |
where n1=0,…,N1 and n2=0,…,N2.
By utilizing Newton's iterative technique, we can solve the preceding nonlinear system of algebraic equations. As a result, the coefficients aij,bij are specified, and the approximate solution can be accounted for ΛN1,N2(ϱ,σ),vN1,N2(ϱ,σ) at any value of (ϱ,σ) in the known domain, by means of the next equation
ΛN1,N2(ϱ,σ)=N2∑i=0N1∑j1=0aij1Lτ,i(σ)LL,j1(ϱ),γN1,N2(ϱ,σ)=N2∑i=0N1∑j=0bij1Lτ,i(σ)LL,j1(ϱ). | (4.14) |
In this section, we investigate an error analysis of the present method.
Definition 5.1. For a nonnegative integer ρ, we have [51,53]
Hρ(−1,1)={Λ:∂ızΛ∈L2(−1,1),0≤i≤ρ}, |
whereas ∂ızΛ(z)=∂ıΛ(z)∂zı, and
∥Λ∥ρ=(ρ∑ı=0∥∂ızΛ∥2)12. |
|Λ|ρ=∥∂ρzΛ∥. |
Lemma 5.2. For Λ∈Bq(ωd) with d≤q≤N+1 [54]
‖Im,xΛ−Λ‖≤c√(N−q1)!N!(N+q)−(q+1)/2‖Λ‖Bq(ωd). | (5.1) |
Theorem 5.3. Let INΛ(ϱ) and Λ(ϱ) be the spectral approximation and the exact solution of the Volterra-Fredholm system. Thus, we have
∥EN∥L2(I)≤C√(N−ρ+1)!N!(N+ρ)−(ρ+1)/2[|F(Λ(⋅))|H1(I)+|Λ|H1(I)]+LM∥EN∥. | (5.2) |
Proof. We can write the system in Eq (3.1) as a multivariate system
Λ(ϱ)=Iϱ,NΔ(ϱ)+Iϱ,N∫ϱ0J(ϱ,σ)Λ(ϱ)dσ+Iϱ,N∫10J(ϱ,σ)Λ(ϱ)dσ. | (5.3) |
When utilizing the approximate solution we have
ΛN(ϱ)=Iϱ,NΔ(ϱ)+Iϱ,NIσ,N∫ϱ0J(ϱ,σ)ΛN(ϱ)dσ+Iϱ,NIσ,N∫10J(ϱ,σ)ΛN(ϱ)dσ. | (5.4) |
Subtracting (5.4) from (5.3) yields
‖e‖≤4∑ℓ=1‖Bℓ‖, | (5.5) |
where
B1=Iϱ,N∫ϱ0(I−Iσ,N)[J(ϱ,σ)Λ(ϱ)dσ],B2=Iϱ,N∫ϱ0Iσ,N[J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)]dσ,B3=Iϱ,N∫10(I−Iσ,N)[J(ϱ,σ)ΛN(ϱ)dσ],B4=Iϱ,N∫10Iσ,N[J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)]dσ. |
We can write (5.5) by using Gronwall inequality
∥e(x)∥L2≤∥B1∥L2+∥B2∥L2+∥B3∥L2+∥B4∥L2. | (5.6) |
Then, the term ∥B1∥ is estimated as the following:
∥B1∥=‖Iϱ,N∫ϱ0(I−Iσ,N)[J(ϱ,σ)Λ(ϱ)]dσ‖=[∑|ı|∞≤Nϖı(∫ϱ0(I−Iσ,N)[J(ϱ,σ)Λ(ϱ)]dσ)2]12. | (5.7) |
By using the Cauchy inequality, we can get,
∥B1∥≤[∑|ı|∞≤Nϖı∫ϱ0|(I−Iσ,N)(J(ϱ,σ)Λ(ϱ))|2dσ]12≤(∑|ı|∞≤Nϖı)12max|ı|∞≤N(∫σ0|(I−Iσ,N)(J(ϱ,σ)Λ(ϱ))|2dσ)12. | (5.8) |
Hence,
∥B1∥≤c√(N−ρ+1)!N!(N+ρ)−(ρ+1)/2|F(Λ(⋅))|. | (5.9) |
Now we estimate the term ‖B2‖. We use the Legendre-Gauss integration formula (2.3) to obtain
∥B2∥=‖Iϱ,N∫ϱ0Iσ,N[J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)]dσ‖=[∑|ı|∞≤Nϖı(∫ϱ0Iσ,N[J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)]dσ)2]12. | (5.10) |
We obtain it by using the Cauchy-Schwarz inequality
∥B2∥≤[∑|ı|∞≤Nϖı∫ϱ0Iσ,N|J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)|2dσ]12≤[∑|ı|∞≤Nϖı∑|ℓ|∞≤Nϖℓ|J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)|2]12. | (5.11) |
By using the Lipschitz condition, we can write
∥B2∥≤LM[∑|ı|∞≤Nϖı∑|ℓ|∞≤N|Λ(ϱ)−ΛN(ϱ)|2ϖℓ]12≤LM[∫10|Iσ,N(Λ(ϱ)−ΛN(ϱ)|2dη]12. | (5.12) |
By using the triangle inequality, we derive that
∥B2∥≤LM[(∫10|Iσ,N(Λ(ϱ)−ΛN(ϱ)|2dσ)12+(∫10|Λ(ϱ)−ΛN(ϱ)|2dη)12]. | (5.13) |
Furthermore, from Lemma 5.2, we can deduce that
∥B2∥≤c√(N−ρ+1)!N!(N+ρ)−(ρ+1)/2|Λ|+LM∥EN∥. | (5.14) |
Then, the term ∥B3∥ is estimated as the following:
∥B3∥=‖Iϱ,N∫10(I−Iσ,N)[J(ϱ,σ)Λ(ϱ)]dσ‖=[∑|ı|∞≤Nϖı(∫10(I−Iσ,N)[J(ϱ,σ)Λ(ϱ)]dσ)2]12. | (5.15) |
By using the Cauchy inequality, we can get,
∥B3∥≤[∑|ı|∞≤Nϖı∫10|(I−Iσ,N)(J(ϱ,σ)Λ(ϱ))|2dσ]12≤(∑|ı|∞≤Nϖı)12max|ı|∞≤N(∫10|(I−Iσ,N)(J(ϱ,σ)Λ(ϱ))|2dσ)12. | (5.16) |
Hence,
∥B3∥≤c√(N−ρ+1)!N!(N+ρ)−(ρ+1)/2|F(Λ(⋅))|. | (5.17) |
Now, we estimate ‖B4‖. We use Eq (2.3) to obtain
∥B4∥=‖Iϱ,N∫10Iσ,N[J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)]dσ‖=[∑|ı|∞≤Nϖı(∫10Iσ,N[J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)]dσ)2]12. | (5.18) |
We obtain it by using the Cauchy-Schwarz inequality
∥B4∥≤[∑|ı|∞≤Nϖı∫10Iσ,N|J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)|2dσ]12≤[∑|ı|∞≤Nϖı∑|ℓ|∞≤Nϖℓ|J(ϱ,σ)Λ(ϱ)−J(ϱ,σ)ΛN(ϱ)|2]12. | (5.19) |
By using the Lipschitz condition, we can write
∥B4∥≤LM[∑|ı|∞≤Nϖı∑|ℓ|∞≤N|Λ(ϱ)−ΛN(ϱ)|2ϖℓ]12≤LM[∫10|Iσ,N(Λ(ϱ)−ΛN(ϱ)|2dη]12. | (5.20) |
By using the triangle inequality, we have that
∥B4∥≤LM[(∫10|Iσ,N(Λ(ϱ)−ΛN(ϱ)|2dσ)12+(∫10|Λ(ϱ)−ΛN(ϱ)|2dη)12]. | (5.21) |
Additionally, from Lemma 5.2, we can deduce that
∥B4∥≤c√(N−ρ+1)!N!(N+ρ)−(ρ+1)/2|Λ|+LM∥EN∥. | (5.22) |
To illustrate the performance of the proposed scheme and the thoroughness of the results, we present some numerical examples. The results with the new method are compared with those yielded by others [11,15,18,19]. For assessing accuracy, the difference between the exact, Λ(ϱ), and the approximate, ΛN,M(ϱ), solutions at the point ϱ, meaning the absolute error E is adopted, that is,
E(ϱ,σ)=∣Λ(ϱ,σ)−ΛN1,N2(ϱ,σ)∣. | (6.1) |
Additionally, the maximum absolute error (ME) is specified by
M_E =Max{E(ϱ,σ):(ϱ,σ)∈[0,L]×[0,τ]}. | (6.2) |
Example 1. Let us consider the one-dimensional linear SMVF-IEs [18]:
{5Λ1(ϱ)=Δ1(ϱ)−1∫0sin(ϱ−χ)cos(Λ1(χ))cos(γ2(χ))dχ−ϱ∫0(2ϱΛ1(χ)+ϱχγ2(χ))dχ,5γ2(ϱ)=Δ2(ϱ)−1∫0(ϱχ2cos(Λ1(χ))+χcos(Λ1(χ)))dχ−ϱ∫0(ϱ2sin(Λ1(χ))+χ2γ2(χ))dχ,ϱ∈[0,1], | (6.3) |
where Δ1(ϱ) and Δ2(ϱ) are given functions, founded by the exact solution Λ1(ϱ)=1−ϱ, γ2(ϱ)=ϱ.
In order to illustrate the convergence rate of our technique, we list the ME for several options of N1 in Table 1, while comparing our method with the fixed point collocation approach (FPCA) [18]. We verify that the new technique leads to a better numerical solution with far fewer nodes, and that our numerical solutions are very close to the exact ones. In Figure 1, we illustrate the ME (i.e., log10ME) obtained with the new technique for diverse values of N, {where E1 and E2 correspond to Λ1(ϱ) and γ2(ϱ), respectively, in logarithmic graphs being computed as in Eq (6.1)}.
FPCA [18] at | New method at | |||
N=6 | N=4 | N=6 | N=8 | |
Λ1 | 9.53×10−6 | 1.04×10−7 | 2.68×10−12 | 3.73×10−16 |
γ2 | 4.93×10−5 | 8.24×10−9 | 4.55×10−14 | 3.26×10−16 |
Example 2. We solve the two-dimensional linear SMVF-IEs [19]:
{Λ1(ϱ,σ)=σsin(ϱ)−12+12cos(ϱ)−12sin(ϱ)+ϱ∫01∫0(Λ1(χ,ψ)+γ2(χ,ψ))dψdχ,γ2(ϱ,σ)=σcos(ϱ)−12+12sin(ϱ)−12cos(ϱ)+ϱ∫01∫0(Λ1(χ,ψ)−γ2(χ,ψ))dψdχ,(ϱ,σ)∈[0,1]×[0,1], | (6.4) |
that has the exact solution Λ1(ϱ,σ)=σsin(ϱ), γ2(ϱ,σ)=σcos(ϱ).
For several choices of N, we verify that the new technique is more accurate than the homotopy method (HAM) [19]. Table 2 summarizes the values of the absolute errors E of problem 2.
HAM [19] at | New method at | |||||
Figures 2 and 3, illustrate the evolution of the absolute errors along each dimension, E1 and E2, for N=12. To emphasize the high thoroughness and convergence rate of the new scheme, we depict the maximum absolute errors in log scale in Figure 4. Based on the results, we may conclude that the proposed technique yields excellent approximations and exponential convergence rates.
Example 3. We now consider the nonlinear two-dimensional SMVF-IEs [15]:
{Λ1(ϱ,σ)=ϱ+σ−29ϱ2χ3−14ϱ2χ4+σ∫01∫0ϱ2ψ2((Λ1(χ,ψ))2+γ2(χ,ψ))dψdχ,γ2(ϱ,σ)=ϱ2−χ2+15ϱχ6−29ϱχ4−12ϱχ3−310ϱχ2+σ∫01∫0ϱσ(Λ1(χ,ψ)−(γ2(χ,ψ))2)dψdχ, | (6.5) |
where (ϱ,σ)∈[0,1]×[0,1], and with the exact solution Λ1(ϱ,σ)=ϱ+σ, γ2(ϱ,σ)=ϱ2−σ2.
Table 3 shows the absolute errors by utilizing the new algorithm and those with the homotopy perturbation method (HPM) [15]. It is observed that the proposed technique is more precise than the HPM.
HPM [15] at |
New method at |
|||
(0.0, 0.0) | ||||
(0.1, 0.1) | ||||
(0.2, 0.2) | ||||
(0.3, 0.3) | ||||
(0.4, 0.4) | ||||
(0.5, 0.5) | ||||
(0.6, 0.6) | ||||
(0.7, 0.7) | ||||
(0.8, 0.8) |
Example 4. We consider the nonlinear two-dimensional SMVF-IEs [19]:
{Λ1(ϱ,σ)=Δ1(ϱ,σ)+ϱ∫01∫0(χ−ψ2)((Λ1(χ,ψ))2+γ2(χ,ψ))dψdχ,γ2(ϱ,σ)=Δ2(ϱ,σ)+σ∫01∫0(2Λ1(χ,ψ)−3ϱγ2(χ,ψ)dψdχ,(ϱ,σ)∈[0,1]×[0,1], | (6.6) |
where Δ1(ϱ,σ) and Δ2(ϱ,σ) are the given real valued functions, and the exact solution is Λ1(ϱ,σ)=−2ϱ+2ϱσ, γ2(ϱ,σ)=1+2ϱsin(σ).
Table 4 compares the absolute error E resulting from the application of the new proposed method with that by the approach in [19] for several values of N and M. The numerical results show that the solutions are extremely precise, even with small values of N and M.
HAM [19] at |
New Method at |
|||
In this paper, a shifted Legendre-Gauss-Lobatto collocation scheme was proposed for numerically solving SMVF-IEs. First, the one-dimensional case was solved, and then the method was extended to address two-dimensional linear and nonlinear SMVF-IEs. Different numerical examples revealed the superiority of the proposed approach when compared with alternative techniques for treating SMVF-IEs. The SMVF-IEs play a crucial role in many scientific and engineering problems and, thus, methods for solving then accurately are crucial.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4380165DSR01).
The authors declare no conflicts of interest.
[1] | A. M. Wazwaz, Linear and nonlinear integral equations, Vol. 639, Springer, 2011. |
[2] | A. M. Wazwaz, First course in integral equations, A, World Scientific Publishing Company, 2015. |
[3] |
E. Babolian, M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl., 62 (2011), 187–198. https://doi.org/10.1016/j.camwa.2011.04.066 doi: 10.1016/j.camwa.2011.04.066
![]() |
[4] |
W. J. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, Appl. Numer. Math., 59 (2009), 1709–1719. https://doi.org/10.1016/j.apnum.2009.01.009 doi: 10.1016/j.apnum.2009.01.009
![]() |
[5] |
M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Fractional-order shifted legendre collocation method for solving non-linear variable-order fractional fredholm integro-differential equations, Comput. Appl. Math., 41 (2022), 2. https://doi.org/10.1007/s40314-021-01702-4 doi: 10.1007/s40314-021-01702-4
![]() |
[6] |
Y. Khan, K. Sayevand, M. Fardi, M. Ghasemi, A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations, Appl. Math. Comput., 249 (2014), 229–236. https://doi.org/10.1016/j.amc.2014.10.070 doi: 10.1016/j.amc.2014.10.070
![]() |
[7] |
A. Shidfar, A. Molabahrami, Solving a system of integral equations by an analytic method, Math. Comput. Model., 54 (2011), 828–835. https://doi.org/10.1016/j.mcm.2011.03.031 doi: 10.1016/j.mcm.2011.03.031
![]() |
[8] |
A. Kouibia, M. Pasadas, M. L. Rodriguez, A variational method for solving Fredholm integral systems, Appl. Numer. Math., 62 (2012), 1041–1049. https://doi.org/10.1016/j.apnum.2011.11.006 doi: 10.1016/j.apnum.2011.11.006
![]() |
[9] |
M. Eckert, M. Kupper, S. Hohmann, Functional fractional calculus for system identification of battery cells, at–Automatisierungstechnik, 62 (2014), 272–281. https://doi.org/10.1515/auto-2014-1083 doi: 10.1515/auto-2014-1083
![]() |
[10] |
M. Javidi, A. Golbabai, A numerical solution for solving system of Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., 189 (2007), 1921–1928. https://doi.org/10.1016/j.amc.2006.12.070 doi: 10.1016/j.amc.2006.12.070
![]() |
[11] |
M. Javidi, Modified homotopy perturbation method for solving system of linear Fredholm integral equations, Math. Comput. Model., 50 (2009), 159–165. https://doi.org/10.1016/j.mcm.2009.02.003 doi: 10.1016/j.mcm.2009.02.003
![]() |
[12] |
F. Liang, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on piecewise polynomial interpolation, Appl. Math. Comput., 216 (2010), 3073–3088. https://doi.org/10.1016/j.amc.2010.04.027 doi: 10.1016/j.amc.2010.04.027
![]() |
[13] |
J. Saberi-Nadjafi, M. Tamamgar, The variational iteration method: a highly promising method for solving the system of integro-differential equations, Comput. Math. Appl., 56 (2008), 346–351. https://doi.org/10.1016/j.camwa.2007.12.014 doi: 10.1016/j.camwa.2007.12.014
![]() |
[14] |
J. Biazar, B. Ghanbari, M. G. Porshokouhi, M. G. Porshokouhi, He's homotopy perturbation method: a strongly promising method for solving non-linear systems of the mixed Volterra-Fredholm integral equations, Comput. Math. Appl., 61 (2011), 1016–1023. https://doi.org/10.1016/j.camwa.2010.12.051 doi: 10.1016/j.camwa.2010.12.051
![]() |
[15] |
E. Babolian, N. Dastani, He's homotopy perturbation method: an effective tool for solving a nonlinear system of two-dimensional Volterra-Fredholm integral equations, Math. Comput. Model., 55 (2012), 1233–1244. https://doi.org/10.1016/j.mcm.2011.10.003 doi: 10.1016/j.mcm.2011.10.003
![]() |
[16] |
N. Akkurt, T. Shedd, A. A. Memon, Usman, M. R. Ali, M. Bouye, Analysis of the forced convection via the turbulence transport of the hybrid mixture in three-dimensional L-shaped channel, Case Stud. Therm. Eng., 41 (2023), 102558. https://doi.org/10.1016/j.csite.2022.102558 doi: 10.1016/j.csite.2022.102558
![]() |
[17] |
K. F. Al Oweidi, F. Shahzad, W. Jamshed, R. W. Ibrahim, E. S. M. Tag El Din, A. M. AlDerea, Partial differential equations of entropy analysis on ternary hybridity nanofluid flow model via rotating disk with hall current and electromagnetic radiative influences, Sci. Rep., 12 (2022), 20692. https://doi.org/10.1038/s41598-022-24895-y doi: 10.1038/s41598-022-24895-y
![]() |
[18] |
F. Caliò, A. I. Garralda-Guillem, E. Marchetti, M. Ruiz Galán, Numerical approaches for systems of Volterra-Fredholm integral equations, Appl. Math. Comput., 225 (2013), 811–821. https://doi.org/10.1016/j.amc.2013.10.006 doi: 10.1016/j.amc.2013.10.006
![]() |
[19] |
M. Ghasemi, M. Fardi, R. Khoshsiar Ghaziani, Solution of system of the mixed Volterra-Fredholm integral equations by an analytical method, Math. Comput. Model., 58 (2013), 1522–1530. https://doi.org/10.1016/j.mcm.2013.06.006 doi: 10.1016/j.mcm.2013.06.006
![]() |
[20] |
S. Goud Bejawada, Y. D. Reddy, W. Jamshed, Usman, S. S. P. M. Isa, S. M. El Din, et al., Comprehensive examination of radiative electromagnetic flowing of nanofluids with viscous dissipation effect over a vertical accelerated plate, Sci. Rep., 12 (2022), 20548. https://doi.org/10.1038/s41598-022-25097-2 doi: 10.1038/s41598-022-25097-2
![]() |
[21] |
S. Shaheen, M. B. Arain, K. S. Nisar, A. Albakri, M. D. Shamshuddin, F. O. Mallawi, et al., A case study of heat transmission in a Williamson fluid flow through a ciliated porous channel: a semi-numerical approach, Case Stud. Therm. Eng., 41 (2023), 102523. https://doi.org/10.1016/j.csite.2022.102523 doi: 10.1016/j.csite.2022.102523
![]() |
[22] |
S. U. Khan, Usman, A. Raza, A. Kanwal, K. Javid, Mixed convection radiated flow of Jeffery-type hybrid nanofluid due to inclined oscillating surface with slip effects: a comparative fractional model, Waves Random Complex Media, 2022, 1–22. https://doi.org/10.1080/17455030.2022.2122628 doi: 10.1080/17455030.2022.2122628
![]() |
[23] |
Usman, M. M. Bhatti, A. Ghaffari, M. H. Doranehgard, The role of radiation and bioconvection as an external agent to control the temperature and motion of fluid over the radially spinning circular surface: a theoretical analysis via chebyshev spectral approach, Math. Methods Appl. Sci., 46 (2022), 11523–11540. https://doi.org/10.1002/mma.8085 doi: 10.1002/mma.8085
![]() |
[24] |
C. Wu, Z. Wang, The spectral collocation method for solving a fractional integro-differential equation, AIMS Math., 7 (2022), 9577–9587. https://doi.org/10.3934/math.2022532 doi: 10.3934/math.2022532
![]() |
[25] |
Y. Talaei, S. Micula, H. Hosseinzadeh, S. Noeiaghdam, A novel algorithm to solve nonlinear fractional quadratic integral equations, AIMS Math., 7 (2022), 13237–13257. https://doi.org/10.3934/math.2022730 doi: 10.3934/math.2022730
![]() |
[26] |
A. Z. Amin, A. K. Amin, M. A. Abdelkawy, A. A. Alluhaybi, I. Hashim, Spectral technique with convergence analysis for solving one and two-dimensional mixed volterra-fredholm integral equation, Plos One, 18 (2023), e0283746. https://doi.org/10.1371/journal.pone.0283746 doi: 10.1371/journal.pone.0283746
![]() |
[27] | E. H. Doha, R. M. Hafez, M. A. Abdelkawy, S. S. Ezz-Eldien, T. M. Taha, M. A. Zaky, et al., Composite bernoulli-laguerre collocation method for a class of hyperbolic telegraph-type equations, Rom. Rep. Phys., 69 (2017), 119. |
[28] |
M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions, J. Sci. Comput., 82 (2020), 1–27. https://doi.org/10.1007/s10915-019-01117-8 doi: 10.1007/s10915-019-01117-8
![]() |
[29] |
A. S. Hendy, M. A. Zaky, Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math., 156 (2020), 276–302. https://doi.org/10.1016/j.apnum.2020.05.002 doi: 10.1016/j.apnum.2020.05.002
![]() |
[30] |
E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, D. Baleanu, Spectral technique for solving variable-order fractional Volterra integro-differential equations, Numer. Methods Part. Differ. Equ., 34 (2018), 1659–1677. https://doi.org/10.1002/num.22233 doi: 10.1002/num.22233
![]() |
[31] |
A. Z. Amin, M. A. Zaky, A. S. Hendy, I. Hashim, A. Aldraiweesh, High-order multivariate spectral algorithms for high-dimensional nonlinear weakly singular integral equations with delay, Mathematics, 10 (2022), 3065. https://doi.org/10.3390/math10173065 doi: 10.3390/math10173065
![]() |
[32] | A. Z. Amin, M. A. Abdelkawy, I. Hashim, A space-time spectral approximation for solving nonlinear variable-order fractional convection-diffusion equations with nonsmooth solutions, Int. J. Mod. Phys. C, 2022, 2350041, |
[33] |
M. A. Abdelkawy, A. Z. M. Amin, A. H. Bhrawy, J. A. Tenreiro Machado, A. M. Lopes, Jacobi collocation approximation for solving multi-dimensional Volterra integral equations, Int. J. Nonlinear Sci. Numer. Simul., 18 (2017), 411–425. https://doi.org/10.1515/ijnsns-2016-0160 doi: 10.1515/ijnsns-2016-0160
![]() |
[34] |
E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, On spectral methods for solving variable-order fractional integro-differential equations, Comput. Appl. Math., 37 (2018), 3937–3950. https://doi.org/10.1007/s40314-017-0551-9 doi: 10.1007/s40314-017-0551-9
![]() |
[35] | A. H. Bhrawy, M. A. Abdelkawy, D. Baleanu, A. Z. M. Amin, A spectral technique for solving two-dimensional fractional integral equations with weakly singular kernel, Hacet. J. Math. Stat., 47 (2018), 553–566. |
[36] |
A. Z. Amin, A. M. Lopes, I. Hashim, A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley-Torvik differential equation, Int. J. Nonlinear Sci. Numer. Simul., 2022. https://doi.org/10.1515/ijnsns-2021-0395 doi: 10.1515/ijnsns-2021-0395
![]() |
[37] |
J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
![]() |
[38] |
M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525–3538. https://doi.org/10.1007/s40314-017-0530-1 doi: 10.1007/s40314-017-0530-1
![]() |
[39] |
M. A. Zaky, An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243–2258. https://doi.org/10.1016/j.camwa.2017.12.004 doi: 10.1016/j.camwa.2017.12.004
![]() |
[40] |
A. H. Bhrawy, M. A. Zaky, J. A. T. Machado, Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation, J. Optim. Theory. Appl., 174 (2017), 321–341. https://doi.org/10.1007/s10957-016-0863-8 doi: 10.1007/s10957-016-0863-8
![]() |
[41] |
W. M. Abd-Elhameed, Y. H. Youssri, Spectral tau solution of the linearized time-fractional KdV-type equations, AIMS Math., 7 (2022), 15138–15158. https://doi.org/10.3934/math.2022830 doi: 10.3934/math.2022830
![]() |
[42] |
E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Shifted fractional legendre spectral collocation technique for solving fractional stochastic volterra integro-differential equations, Eng. Comput., 38 (2022), 1363–1373. https://doi.org/10.1007/s00366-020-01263-w doi: 10.1007/s00366-020-01263-w
![]() |
[43] |
W. Shao, X. Wu, An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations, Appl. Math. Model., 39 (2015), 2554–2569. https://doi.org/10.1016/j.apm.2014.10.048 doi: 10.1016/j.apm.2014.10.048
![]() |
[44] |
X. Ma, C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model., 38 (2014), 1434–1448. https://doi.org/10.1016/j.apm.2013.08.013 doi: 10.1016/j.apm.2013.08.013
![]() |
[45] | M. R. Eslahchi, M. Dehghan, M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math., 257, 105–128. https://doi.org/10.1016/j.cam.2013.07.044 |
[46] |
A. Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, R. Yunus, Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose, J. Comput. Phys., 294 (2015), 562–584. https://doi.org/10.1016/j.jcp.2015.03.011 doi: 10.1016/j.jcp.2015.03.011
![]() |
[47] |
B. Soltanalizadeh, H. Roohani Ghehsareh, S. Abbasbandy, A super accurate shifted tau method for numerical computation of the sobolev-type differential equation with nonlocal boundary conditions, Appl. Math. Comput., 236 (2014), 683–692. https://doi.org/10.1016/j.amc.2014.03.044 doi: 10.1016/j.amc.2014.03.044
![]() |
[48] |
Y. Yin, Y. Chen, Y. Huang, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci., 34 (2014), 673–690. https://doi.org/10.1016/S0252-9602(14)60039-4 doi: 10.1016/S0252-9602(14)60039-4
![]() |
[49] |
A. H. Bhrawy, E. H. Doha, M. A. Abdelkawy, R. M. Hafez, An efficient collocation algorithm for multidimensional wave type equations with nonlocal conservation conditions, Appl. Math. Model., 39 (2015), 5616–5635. https://doi.org/10.1016/j.apm.2015.01.029 doi: 10.1016/j.apm.2015.01.029
![]() |
[50] |
X. Zhang, Jacobi spectral method for the second-kind Volterra integral equations with a weakly singular kernel, Appl. Math. Model., 39 (2015), 4421–4431. https://doi.org/10.1016/j.apm.2014.12.046 doi: 10.1016/j.apm.2014.12.046
![]() |
[51] | J. Shen, T. Tang, L. L. Wang, Spectral methods: algorithms, analysis and applications, Vol. 41, Springer Science & Business Media, 2011. |
[52] | A. Z. Amin, A. M. Lopes, I. Hashim, A space-time spectral collocation method for solving the variable-order fractional fokker-planck equation, J. Appl. Anal. Comput., 13 (2023), 969–985. |
[53] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: fundamentals in single domains, Springer Science & Business Media, 2007. |
[54] |
M. A. Zaky, I. G. Ameen, N. A. Elkot, E. H. Doha, A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl. Numer. Math., 161 (2021), 27–45. https://doi.org/10.1016/j.apnum.2020.10.028 doi: 10.1016/j.apnum.2020.10.028
![]() |
1. | Ahmed Z. Amin, Mohamed A. Abdelkawy, Emad Solouma, Ibrahim Al-Dayel, A Spectral Collocation Method for Solving the Non-Linear Distributed-Order Fractional Bagley–Torvik Differential Equation, 2023, 7, 2504-3110, 780, 10.3390/fractalfract7110780 | |
2. | M. A. Abdelkawy, H. Almadi, E. M. Solouma, M. M. Babatin, Spectral algorithm for two-dimensional fractional sine-Gordon and Klein–Gordon models, 2024, 35, 0129-1831, 10.1142/S0129183124501493 |
FPCA [18] at | New method at | |||
N=6 | N=4 | N=6 | N=8 | |
Λ1 | 9.53×10−6 | 1.04×10−7 | 2.68×10−12 | 3.73×10−16 |
γ2 | 4.93×10−5 | 8.24×10−9 | 4.55×10−14 | 3.26×10−16 |
HAM [19] at | New method at | |||||
HPM [15] at |
New method at |
|||
(0.0, 0.0) | ||||
(0.1, 0.1) | ||||
(0.2, 0.2) | ||||
(0.3, 0.3) | ||||
(0.4, 0.4) | ||||
(0.5, 0.5) | ||||
(0.6, 0.6) | ||||
(0.7, 0.7) | ||||
(0.8, 0.8) |
HAM [19] at |
New Method at |
|||
FPCA [18] at | New method at | |||
N=6 | N=4 | N=6 | N=8 | |
Λ1 | 9.53×10−6 | 1.04×10−7 | 2.68×10−12 | 3.73×10−16 |
γ2 | 4.93×10−5 | 8.24×10−9 | 4.55×10−14 | 3.26×10−16 |
HAM [19] at | New method at | |||||
HPM [15] at |
New method at |
|||
(0.0, 0.0) | ||||
(0.1, 0.1) | ||||
(0.2, 0.2) | ||||
(0.3, 0.3) | ||||
(0.4, 0.4) | ||||
(0.5, 0.5) | ||||
(0.6, 0.6) | ||||
(0.7, 0.7) | ||||
(0.8, 0.8) |
HAM [19] at |
New Method at |
|||