Research article

A modified inertial viscosity extragradient type method for equilibrium problems application to classification of diabetes mellitus: Machine learning methods

  • Received: 30 June 2022 Revised: 29 September 2022 Accepted: 09 October 2022 Published: 17 October 2022
  • MSC : 65K15, 47H05, 49M37

  • Diabetes is one of the four major types of noncommunicable diseases (cardiovascular disease, diabetes, cancer and chronic respiratory diseases). It is chronic condition that occurs when the body does not produce enough insulin therefore results in raised blood sugar levels. Insulin is a hormone that regulates the blood sugar when food consumption. If the proper treatment is not received organs of the body like kidneys, nervous system and eyes can deteriorate. Therefore, it is better to predict diabetes as early as possible because lead to serious damage to many of the body's systems. In this paper, we modify extragradient method with an inertial extrapolation step and viscosity-type method to solve equilibrium problems of pseudomonotone bifunction operator in real Hilbert spaces. Strong convergence result is obtained under the assumption that the bifunction satisfies the Lipchitz-type condition. Moreover, we show choosing stepsize parameter in many ways, this shows that our algorithm is flexible using. Finally, we apply our algorithm to solve the diabetes mellitus classification in machine learning and show the algorithm's efficiency by comparing with existing algorithms.

    Citation: Suthep Suantai, Watcharaporn Yajai, Pronpat Peeyada, Watcharaporn Cholamjiak, Petcharaporn Chachvarat. A modified inertial viscosity extragradient type method for equilibrium problems application to classification of diabetes mellitus: Machine learning methods[J]. AIMS Mathematics, 2023, 8(1): 1102-1126. doi: 10.3934/math.2023055

    Related Papers:

  • Diabetes is one of the four major types of noncommunicable diseases (cardiovascular disease, diabetes, cancer and chronic respiratory diseases). It is chronic condition that occurs when the body does not produce enough insulin therefore results in raised blood sugar levels. Insulin is a hormone that regulates the blood sugar when food consumption. If the proper treatment is not received organs of the body like kidneys, nervous system and eyes can deteriorate. Therefore, it is better to predict diabetes as early as possible because lead to serious damage to many of the body's systems. In this paper, we modify extragradient method with an inertial extrapolation step and viscosity-type method to solve equilibrium problems of pseudomonotone bifunction operator in real Hilbert spaces. Strong convergence result is obtained under the assumption that the bifunction satisfies the Lipchitz-type condition. Moreover, we show choosing stepsize parameter in many ways, this shows that our algorithm is flexible using. Finally, we apply our algorithm to solve the diabetes mellitus classification in machine learning and show the algorithm's efficiency by comparing with existing algorithms.



    加载中


    [1] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011. https://doi.org/10.1007/978-3-319-48311-5
    [2] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student., 63 (1994), 123–145.
    [3] M. R. Bozkurt, N. Yurtay, Z. Yilmaz, C. Setkaya, Comparison of different methodologies for determining diabetes, Turk. J. Electr. Eng. Co., 22 (2014), 1044–1055. https://doi.org/10.3906/elk-1209-82 doi: 10.3906/elk-1209-82
    [4] S. Brahim-Belhouari, A. Bermak, Gaussian process for nonstationary time series prediction, Comput. Stat. Data Anal., 47 (2014), 705–712. https://doi.org/10.1016/j.csda.2004.02.006 doi: 10.1016/j.csda.2004.02.006
    [5] S. P. Chatrati, G. Hossain, A. Goyal, A. Bhan, S. Bhattacharya, D. Gaurav, et al., Smart home health monitoring system for predicting type 2 diabetes and hypertension, J. King Saud Univ.-Com., 34 (2020), 862–870. https://doi.org/10.1016/j.jksuci.2020.01.010 doi: 10.1016/j.jksuci.2020.01.010
    [6] D. K. Choubey, M. Kumar, V. Shukla, S. Tripathi, V. K. Dhandhania, Comparative analysis of classification methods with PCA and LDA for diabetes, Curr. Diabetes Rev., 16 (2020), 833–850. https://doi.org/10.2174/1573399816666200123124008 doi: 10.2174/1573399816666200123124008
    [7] D. Deng, N. Kasabov, On-line pattern analysis by evolving self-organizing maps, Neurocomputing, 51 (2003), 87–103. https://doi.org/10.1016/S0925-2312(02)00599-4 doi: 10.1016/S0925-2312(02)00599-4
    [8] D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, RACSAM Rev. R. Acad. A, 111 (2017), 823–840. https://doi.org/10.1007/s13398-016-0328-9 doi: 10.1007/s13398-016-0328-9
    [9] G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126 doi: 10.1016/j.neucom.2005.12.126
    [10] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756. Available from: https://cs.uwaterloo.ca/y328yu/classics/extragrad.pdf.
    [11] R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163 (2014), 399–412. https://doi.org/10.1007/s10957-013-0494-2 doi: 10.1007/s10957-013-0494-2
    [12] V. A. Kumari, R. Chitra, Classification of diabetes disease using support vector machine, Int. J. Eng. Res. Appl., 3 (2013), 1797–1801.
    [13] L. Li, Diagnosis of diabetes using a weight-adjusted voting approach, IEEE Int. Conf. Bioinform. Bioeng., 2014,320–324. https://doi.org/10.1109/BIBE.2014.27
    [14] K. Muangchoo, A new strongly convergent algorithm to solve pseudomonotone equilibrium problems in a real Hilbert space, J. Math. Comput. Sci., 24 (2022), 308–322. http://dx.doi.org/10.22436/jmcs.024.04.03 doi: 10.22436/jmcs.024.04.03
    [15] L. D. Muu, W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal.-Theor., 18 (1992), 1159–1166. http://dx.doi.org/10.1016/0041-5553(86)90159-X doi: 10.1016/0041-5553(86)90159-X
    [16] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [17] J. R. Quinlan, C4.5: Programs for machine learning, Elsevier, 2014.
    [18] R. T. Rockafellar, Convex analysis, Princeton University Press, 1970.
    [19] Y. Shehu, O. S. Iyiola, Weak convergence for variational inequalities with inertial-type method, Appl. Anal., 101 (2022), 192–216. https://doi.org/10.1080/00036811.2020.1736287 doi: 10.1080/00036811.2020.1736287
    [20] S. Sahan, K. Polat, H. Kodaz, S. Gunes, The medical applications of attribute weighted artificial immune system (AWAIS): Diagnosis of heart and diabetes diseas, International Conference on Artificial Immune Systems, Springer, 3627 (2005), 456–468. https://doi.org/10.1007/11536444_35
    [21] R. Saxena, S. K. Sharma, M. Gupta, G. C. Sampada, A novel approach for feature selection and classification of diabetes mellitus: Machine learning methods, Comput. Intell. Neurosci., 2022 (2022). https://doi.org/10.1155/2022/3820360
    [22] Y. Shehu, C. Izuchukwu, J. C. Yao, X. Qin, Strongly convergent inertial extragradient type methods for equilibrium problems, Appl. Anal., 2021, 1–29. https://doi.org/10.1080/00036811.2021.2021187
    [23] World Health Organization, Global action plan for the prevention and control of NCDs 2013–2020, World Health Organization, 2013. Available from: https://apps.who.int/iris/bitstream/handle/10665/94384/9789241506236%20_eng.pdf?sequence=1.
    [24] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, R. S. Johannes, Using the Adap learning algorithm to forecast the onset of diabetes mellitus, Proc. Annu. Symp. Comput. Appl. Med. Care, 9 (1988), 261–265. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2245318/.
    [25] D. Q. Tran, M. L. Dung, V. H. Hguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749–776. https://doi.org/10.1080/02331930601122876 doi: 10.1080/02331930601122876
    [26] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B, 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [27] T. Thomas, N. Pradhan, V. S. Dhaka, Comparative analysis to predict breast cancer using machine learning algorithms: A survey, IEEE Int. Conf. Invent. Comput. Technol., 2020,192–196. https://doi.org/10.1109ICICT48043.2020.9112464
    [28] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [29] M. O. Osilike, S. C. Aniagbosor, B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Panamerican Math. J., 12 (2002), 77–88.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1117) PDF downloads(103) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog