This work is dedicated to the study of a second order evolutionary partial differential variational-like inequality in Banach space. We obtain the mild solution of our problem by applying the concept of strongly continuous cosine family of bounded linear operators, fixed point theorem for condensing multi-valued operators and measure of non-compactness. It is proved that the solution set of mixed variational-like inequalities is non-empty, bounded, closed and convex.
Citation: Imran Ali, Faizan Ahmad Khan, Haider Abbas Rizvi, Rais Ahmad, Arvind Kumar Rajpoot. Second order evolutionary partial differential variational-like inequalities[J]. AIMS Mathematics, 2022, 7(9): 16832-16850. doi: 10.3934/math.2022924
This work is dedicated to the study of a second order evolutionary partial differential variational-like inequality in Banach space. We obtain the mild solution of our problem by applying the concept of strongly continuous cosine family of bounded linear operators, fixed point theorem for condensing multi-valued operators and measure of non-compactness. It is proved that the solution set of mixed variational-like inequalities is non-empty, bounded, closed and convex.
[1] | R. Ahmad, S. S. Irfan, On generalized variational-like inequality problems, Appl. Math. Lett., 19 (2006), 294–297. https://doi.org/10.1016/j.aml.2005.05.010 doi: 10.1016/j.aml.2005.05.010 |
[2] | R. Ahmad, J. Iqbal, I. Ali, W. A. Mir, Solving nonlinear variational-like inclusion problems using $\eta$-proximal mappings, J. Nonlinear Convex A., 22 (2021), 1577–1590. |
[3] | J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Springer, Berlin, 1984 |
[4] | D. Bothe, Multivalued perturbations of $m$-accretive differential inclusions, Israel J. Math., 108 (1998), 109–138. https://doi.org/10.1007/BF02783044 doi: 10.1007/BF02783044 |
[5] | X. Chen, Z. Wang, Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim., 23 (2013), 1647–1671. https://doi.org/10.1137/120875223 doi: 10.1137/120875223 |
[6] | X. Chen, Z. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program., 146 (2014), 379–408. https://doi.org/10.1007/s10107-013-0689-1 doi: 10.1007/s10107-013-0689-1 |
[7] | I. Ekeland, R. Teman, Convex analysis and variational problems, North Holland, Amsterdam, 1976. |
[8] | Y. P. Fang, N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Theor. Appl., 118 (2003), 327–338. https://doi.org/10.1023/A:1025499305742 doi: 10.1023/A:1025499305742 |
[9] | J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program, 139 (2013), 205–221. https://doi.org/10.1007/s10107-013-0669-5 doi: 10.1007/s10107-013-0669-5 |
[10] | J. Gwinner, Hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics, J. Comput. Appl. Math., 254 (2013), 175–184. https://doi.org/10.1016/j.cam.2013.03.013 doi: 10.1016/j.cam.2013.03.013 |
[11] | M. Kamenski, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Water de Gruyter, Berlin, 2001. |
[12] | Y. Konishi, Cosine functions of operators in locally convex spaces, J. Fac. Sci. Univ. Tokyo IA Math., 18 (1971), 443–463. |
[13] | X. S. Li, N. J. Huang, D. O'Regan, Differential mixed variational inequalities in finite dimensional spaces, Nonlinear Anal., 72 (2010), 3875–3886. https://doi.org/10.1016/j.na.2010.01.025 doi: 10.1016/j.na.2010.01.025 |
[14] | Z. Liu, S. Migórski, S. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differ. Equations, 263 (2017), 3989–4006. https://doi.org/10.1016/j.jde.2017.05.010 doi: 10.1016/j.jde.2017.05.010 |
[15] | Z. H. Liu, S. D. Zeng, D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differ. Equations, 260 (2016), 6787–6799. https://doi.org/10.1016/j.jde.2016.01.012 doi: 10.1016/j.jde.2016.01.012 |
[16] | Z. H. Liu, N. V. Loi, V. Obukhovskii, Existence and global bifurcation of periodic solutions to a class of differential variational inequalities, Int. J. Bifurcat. Chaos, 23 (2013), 1350125. https://doi.org/10.1142/S0218127413501253 doi: 10.1142/S0218127413501253 |
[17] | Z. H. Liu, D. Motreanu, S. D. Zeng, Nonlinear evolutionary systems driven by mixed variational inequalities and its applications, Nonlinear Anal., 42 (2018), 409–421. https://doi.org/10.1016/j.nonrwa.2018.01.008 doi: 10.1016/j.nonrwa.2018.01.008 |
[18] | Z. H. Liu, S. D. Zeng, D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal., 7 (2018), 571–586. https://doi.org/10.1515/anona-2016-0102 doi: 10.1515/anona-2016-0102 |
[19] | S. Migórski, S. D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim., 72 (2018), 761–779. https://doi.org/10.1007/s10898-018-0667-5 doi: 10.1007/s10898-018-0667-5 |
[20] | S. Migórski, W. Han, S. Zeng, A new class of hyperbolic variational-hemivariational inequalities driven by non-linear evolution equations, Eur. J. Appl. Math., 32 (2021), 59–88. https://doi.org/10.1017/S0956792520000030 doi: 10.1017/S0956792520000030 |
[21] | S. Migórski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities, models and analysis of contact problems, Springer, New York, 26 (2013). |
[22] | S. Migórski, S. D. Zeng, Mixed variational inequalities driven by fractional evolutionary equations, Acta Math. Sci., 39 (2019), 461–468. https://doi.org/10.1007/s10473-019-0211-9 doi: 10.1007/s10473-019-0211-9 |
[23] | B. Nagy, On cosine operator functions in Banach spaces, Acta Sci. Math. Szeged, 36 (1974), 281–289. |
[24] | N. S. Papageorgiou, S. T. Kyritsi-Yiallourou, Handbook of applied analysis, Springer, New York, 2009. |
[25] | J. S. Pang, D. E. Stewart, Differential variational inequalities, Math. Progr., 113 (2008), 345–424. https://doi.org/10.1007/s10107-006-0052-x doi: 10.1007/s10107-006-0052-x |
[26] | J. Parida, M. Sahoo, A. Kumar, A variational-like inequality problem, B. Aust. Math. Soc., 39 (1989), 225–231. https://doi.org/10.1017/S0004972700002690 doi: 10.1017/S0004972700002690 |
[27] | M. Sovs, Cosine operator functions, Rozprawy Mat., 49 (1974), 1–47. |
[28] | N. Tatar, Mild and classical solutions to a fractional singular second order evolution problem, Electron. J. Qual. Theory Differ. Equ., 91 (2012), 1–24. https://doi.org/10.14232/ejqtde.2012.1.91 doi: 10.14232/ejqtde.2012.1.91 |
[29] | C. C. Travis, G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. H. Tomus, 32 (1978), 75–96. https://doi.org/10.1007/BF01902205 doi: 10.1007/BF01902205 |
[30] | X. Hao, L. Liu, Mild solution of second-order impulsive integro-differential evolution equation of Volterra type in Banach spaces, Qual. Theor. Dyn. Syst., 19 (2020). https://doi.org/10.1007/s12346-020-00345-w doi: 10.1007/s12346-020-00345-w |
[31] | N. T. Van, T. D. Ke, Asymptotic behavior of solutions to a class of differential variational inequalities, Ann. Pol. Math., 114 (2015), 147–164. |
[32] | X. Wang, N. J. Huang, A class of differential vector variational inequalities in finite dimensional spaces, J. Optim. Theory Appl., 162 (2014), 633–648. https://doi.org/10.1007/s10957-013-0311-y doi: 10.1007/s10957-013-0311-y |
[33] | X. Wang, W. Li, X. S. Li, N. J. Huang, Stability for differential mixed variational inequalities, Optim. Lett., 8 (2014), 1873–1887. https://doi.org/10.1007/s11590-013-0682-x doi: 10.1007/s11590-013-0682-x |
[34] | E. Zeidler, Nonlinear functional analysis and its applications: Ⅱ/B: Nonlinear monotone operators, Springer, New York, 1990. |