This paper is dedicated to studying the following Kirchhoff-Schrödinger-Poisson system:
$ \begin{equation*} \left\{\begin{array}{ll} - \left(a+b \int_{ \mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u+V(|x|) u+\lambda\phi u = K(|x|)f(u), & x \in \mathbb{R}^{3}, \\ -\Delta \phi = u^2, & x \in \mathbb{R}^{3}, \end{array}\right. \end{equation*} $
where $ V, K $ are radial and bounded away from below by positive numbers. Under some weaker assumptions on the nonlinearity $ f $, we develop a direct approach to establish the existence of infinitely many nodal solutions $ \{u_k^{b, \lambda}\} $ with a prescribed number of nodes $ k $, by using the Gersgorin disc's theorem, Miranda theorem and Brouwer degree theory. Moreover, we prove that the energy of $ \{u_k^{b, \lambda}\} $ is strictly increasing in $ k $, and give a convergence property of $ \{u_k^{b, \lambda}\} $ as $ b\rightarrow 0 $ and $ \lambda \rightarrow 0 $.
Citation: Kun Cheng, Li Wang. Nodal solutions for the Kirchhoff-Schrödinger-Poisson system in $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2022, 7(9): 16787-16810. doi: 10.3934/math.2022922
This paper is dedicated to studying the following Kirchhoff-Schrödinger-Poisson system:
$ \begin{equation*} \left\{\begin{array}{ll} - \left(a+b \int_{ \mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u+V(|x|) u+\lambda\phi u = K(|x|)f(u), & x \in \mathbb{R}^{3}, \\ -\Delta \phi = u^2, & x \in \mathbb{R}^{3}, \end{array}\right. \end{equation*} $
where $ V, K $ are radial and bounded away from below by positive numbers. Under some weaker assumptions on the nonlinearity $ f $, we develop a direct approach to establish the existence of infinitely many nodal solutions $ \{u_k^{b, \lambda}\} $ with a prescribed number of nodes $ k $, by using the Gersgorin disc's theorem, Miranda theorem and Brouwer degree theory. Moreover, we prove that the energy of $ \{u_k^{b, \lambda}\} $ is strictly increasing in $ k $, and give a convergence property of $ \{u_k^{b, \lambda}\} $ as $ b\rightarrow 0 $ and $ \lambda \rightarrow 0 $.
[1] | P. Agarwal, J. Merker, G. Schuldt, Singular integral Neumann boundary conditions for semilinear elliptic PDEs, Axioms, 10 (2021), 74. https://doi.org/10.3390/axioms10020074 doi: 10.3390/axioms10020074 |
[2] | A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108. https://doi.org/10.1016/j.jmaa.2008.03.057 doi: 10.1016/j.jmaa.2008.03.057 |
[3] | T. Bartsch, M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\mathbb{R}^n$, Arch. Rational Mech. Anal., 124 (1993), 261–276. https://doi.org/10.1007/BF00953069 doi: 10.1007/BF00953069 |
[4] | V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293. https://doi.org/10.12775/TMNA.1998.019 doi: 10.12775/TMNA.1998.019 |
[5] | D. Cao, X. Zhu, On the existence and nodal character of solutions of semilinear elliptic equations, Acta Math. Sci., 8 (1988), 345–359. https://doi.org/10.1016/S0252-9602(18)30312-6 doi: 10.1016/S0252-9602(18)30312-6 |
[6] | S. Chen, X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^3$, Z. Angew. Math. Phys., 67 (2016). https://doi.org/10.1007/s00033-016-0695-2 doi: 10.1007/s00033-016-0695-2 |
[7] | W. Chen, T. Zhou, Nodal solutions for Kirchhoff equations with Choquard nonlinearity, J. Fixed Point Theory Appl., 24 (2022), 17. https://doi.org/10.1007/s11784-022-00930-3 doi: 10.1007/s11784-022-00930-3 |
[8] | J. Deng, J. Yang, Nodal solutions for Schrödinger-Poisson type equations in $\mathbb{R}^3$, Electron. J. Differ. Eq., 2021 (2021), 277. |
[9] | Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $ \mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500–3527. https://doi.org/10.1016/j.jfa.2015.09.012 doi: 10.1016/j.jfa.2015.09.012 |
[10] | Y. Deng, S. Peng, W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^2$, J. Differ. Equ., 264 (2018), 4006–4035. https://doi.org/10.1016/j.jde.2017.12.003 doi: 10.1016/j.jde.2017.12.003 |
[11] | G. Figueiredo, N. Ikoma, J. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931–979. https://doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8 |
[12] | H. Guo, R. Tang, T. Wang, Infinitely many nodal solutions with a prescribed number of nodes for the Kirchhoff type equations, J. Math. Anal. Appl., 505 (2022), 125519. https://doi.org/10.1016/j.jmaa.2021.125519 doi: 10.1016/j.jmaa.2021.125519 |
[13] | X. He, W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813–1834. https://doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035 |
[14] | Y. He, G. Li, S. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483–510. https://doi.org/10.1515/ans-2014-0214 doi: 10.1515/ans-2014-0214 |
[15] | E. Hebey, Stationary Kirchhoff equations with powers, Adv. Calc. Var., 11 (2018), 139–160. https://doi.org/10.1515/acv-2016-0025 doi: 10.1515/acv-2016-0025 |
[16] | E. Hebey, P. D. Thizy, Stationary Kirchhoff systems in closed 3-dimensional manifolds, Calc. Var. Partial Dif., 54 (2015), 2085–2114. https://doi.org/10.1007/s00526-015-0858-6 doi: 10.1007/s00526-015-0858-6 |
[17] | E. Hebey, P. D. Thizy, Stationary Kirchhoff systems in closed high dimensional manifolds, Commun. Contemp. Math., 18 (2016), 1550028. https://doi.org/10.1142/S0219199715500285 doi: 10.1142/S0219199715500285 |
[18] | Z. Huang, J. Yang, W. Yu, Multiple nodal solutions of nonlinear Choquard equations, Electron. J. Differ. Eq., 2017. |
[19] | S. Kim, J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041. https://doi.org/10.1142/S0219199712500411 doi: 10.1142/S0219199712500411 |
[20] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[21] | F. Li, Z. Song, Q. Zhang, Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl. Anal., 96 (2017), 2906–2916. https://doi.org/10.1080/00036811.2016.1253065 doi: 10.1080/00036811.2016.1253065 |
[22] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 14 (2001). |
[23] | J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., North-Holland, New York, 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 |
[24] | Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat. Pur. Appl., 195 (2016), 775–794. https://doi.org/10.1007/s10231-015-0489-8 doi: 10.1007/s10231-015-0489-8 |
[25] | C. Miranda, Un'osservazione su un teorema di brouwer, Boll. UMI, 3 (1940), 5–7. |
[26] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005 |
[27] | M. Shao, A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, J. Fixed Point Theory Appl., 20 (2018). https://doi.org/10.1007/s11784-018-0486-9 doi: 10.1007/s11784-018-0486-9 |
[28] | W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equ., 259 (2015), 1256–1274. https://doi.org/10.1016/j.jde.2015.02.040 doi: 10.1016/j.jde.2015.02.040 |
[29] | W. Shuai, Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3267–3282. https://doi.org/10.1007/s00033-015-0571-5 doi: 10.1007/s00033-015-0571-5 |
[30] | W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149–162. https://doi.org/10.1007/BF01626517 doi: 10.1007/BF01626517 |
[31] | M. Struwe, Variational methods, Springer-Verlag, Berlin, 2008. https://doi.org/10.1007/978-3-662-02624-3 |
[32] | M. Sun, J. Su, L. Zhao, Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities, Discrete Contin. Dyn. Syst., 35 (2015), 427. http://doi.org/10.3934/dcds.2015.35.427 doi: 10.3934/dcds.2015.35.427 |
[33] | X. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261 (2016), 2384–2402. https://doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032 |
[34] | R. S. Varga, Gersgorin and his circles, Spring Science & Business Media, New York, 2010. https://doi.org/10.1007/978-3-642-17798-9 |
[35] | Z. Wang, H. Zhou, Sign-changing solutions for the nonlinear schrödinger-poisson system in $\mathbb{R}^3$, Calc. Var. Partial Dif., 52 (2015), 927–943. https://doi.org/10.1007/s00526-014-0738-5 doi: 10.1007/s00526-014-0738-5 |
[36] | M. Willem, Minimax theorems, progress in nonlinear differential equations and their applications, Birkhäuser Boston, Inc., Boston, 24 (1996). https://doi.org/10.1007/978-1-4612-4146-1 |
[37] | M. Xiang, P. Pucci, M. Squassina, B. Zhang, Nonlocal Schrödinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 37 (2017), 1631–1649. http://dx.doi.org/10.3934/dcds.2017067 doi: 10.3934/dcds.2017067 |
[38] | M. Xiang, V. D. Rădulescu, B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228–3250. https://doi.org/10.1088/1361-6544/aaba35 doi: 10.1088/1361-6544/aaba35 |
[39] | Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463. https://doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102 |
[40] | G. Zhao, X. Zhu, Y. Li, Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system, Appl. Math. Comput., 256 (2015), 572–581. https://doi.org/10.1016/j.amc.2015.01.038 doi: 10.1016/j.amc.2015.01.038 |
[41] | L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equ., 255 (2013), 1–23. https://doi.org/10.1016/j.jde.2013.03.005 doi: 10.1016/j.jde.2013.03.005 |