The generalized $ k $-connectivity $ \kappa_k(G) $ of a graph $ G $, introduced by Hager in 1985, is a natural generalization of the classical connectivity. As a natural counterpart, Li et al. proposed the concept of generalized $ k $-edge-connectivity $ \lambda_k(G) $. In this paper, we obtain exact values or sharp upper and lower bounds of $ \kappa_k(G) $ and $ \lambda_k(G) $ for join, corona and cluster graphs.
Citation: Meiqin Wei, He Zhang, Zhao Wang, Yaping Mao. Generalized (edge-)connectivity of join, corona and cluster graphs[J]. AIMS Mathematics, 2022, 7(9): 16775-16786. doi: 10.3934/math.2022921
The generalized $ k $-connectivity $ \kappa_k(G) $ of a graph $ G $, introduced by Hager in 1985, is a natural generalization of the classical connectivity. As a natural counterpart, Li et al. proposed the concept of generalized $ k $-edge-connectivity $ \lambda_k(G) $. In this paper, we obtain exact values or sharp upper and lower bounds of $ \kappa_k(G) $ and $ \lambda_k(G) $ for join, corona and cluster graphs.
[1] | F. Bao, Y. Igarashi, S. R. Öhring, Reliable broadcasting in product networks, Discrete Appl. Math., 83 (1998), 3–20. https://doi.org/10.1016/S0166-218X(97)00100-5 doi: 10.1016/S0166-218X(97)00100-5 |
[2] | L. W. Beineke, R. J. Wilson, Topics in structural graph theory, Cambrige University Press, 2013. |
[3] | J. A. Bondy, U. S. R. Murty, Graph theory, GTM 244, Springer, 2008. |
[4] | G. Chartrand, S. F. Kappor, L. Lesniak, D. R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq., 2 (1984), 1–6. |
[5] | G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks, 55 (2010), 360–367. https://doi.org/10.1002/net.20339 doi: 10.1002/net.20339 |
[6] | X. Cheng, D. Du, Steiner trees in industry, Kluwer Academic Publisher, Dordrecht, 2001. |
[7] | E. Cheng, L. Lipák, K. Qiu, Z. Shen, Cyclic vertex-connectivity of Cayley graphs generated by transposition trees, Graph. Combinator., 29 (2013), 835–841. https://doi.org/10.1007/s00373-012-1172-0 doi: 10.1007/s00373-012-1172-0 |
[8] | E. Cheng, L. Lipák, W. Yang, Z. Zhang, X. Guo, A kind of conditional vertex connectivity of Cayley graphs generated by 2-trees, Inform. Sciences, 181 (2011), 4300–4308. https://doi.org/10.1016/j.ins.2011.05.010 doi: 10.1016/j.ins.2011.05.010 |
[9] | E. Cheng, K. Qiu, Z. Shen, A strong connectivity property of the generalized exchanged hypercube, Discrete Appl. Math., 216 (2017), 529–536. https://doi.org/10.1016/j.dam.2015.11.014 doi: 10.1016/j.dam.2015.11.014 |
[10] | D. Du, X. Hu, Steiner tree problems in computer communication networks, World Scientific, 2008. |
[11] | K. Day, A. E. Al-Ayyoub, The cross product of interconnection networks, IEEE T. Parall. Distr., 8 (1997), 109–118. https://doi.org/10.1109/71.577251 doi: 10.1109/71.577251 |
[12] | D. P. Day, O. R. Oellermann, H. C. Swart, The $\ell$-connectivity function of trees and complete multipartite graphs, J. Comb. Math. Comb. Comput., 10 (1991), 183–192. |
[13] | M. Feng, M. Xu, K. Wang, Identifying codes of lexicographic product of graphs, Electron. J. Combin., 19 (2012), 56–63. https://doi.org/10.37236/2974 doi: 10.37236/2974 |
[14] | P. Fragopoulou, S. G. Akl, Edge-disjoint spanning trees on the star network with applications to fault tolerance, IEEE Trans. Comput., 45 (1996), 174–185. https://doi.org/10.1109/12.485370 doi: 10.1109/12.485370 |
[15] | M. Grötschel, The Steiner tree packing problem in VLSI design, Math. Program., 78 (1997), 265–281. https://doi.org/10.1007/BF02614374 doi: 10.1007/BF02614374 |
[16] | M. Grötschel, A. Martin, R. Weismantel, Packing Steiner trees: A cutting plane algorithm and commputational results, Math. Program., 72 (1996), 125–145. https://doi.org/10.1007/BF02592086 doi: 10.1007/BF02592086 |
[17] | M. Hager, Pendant tree-connectivity, J. Comb. Theory, 38 (1985), 179–189. https://doi.org/10.1016/0095-8956(85)90083-8 doi: 10.1016/0095-8956(85)90083-8 |
[18] | M. Hager, Path-connectivity in graphs, Discrete Math., 59 (1986), 53–59. https://doi.org/10.1016/0012-365X(86)90068-3 doi: 10.1016/0012-365X(86)90068-3 |
[19] | R. Hammack, W. Imrich, S. Klav$\breve {\rm{s}}$r, Handbook of product graphs, 2 Ed., CRC Press, 2011. |
[20] | S. He, R. Hao, E. Cheng, Strongly Menger-edge-connectedness and strongly Menger-vertex-connectedness of regular networks, Theor. Comput. Sci., 731 (2018), 50–67. https://doi.org/10.1016/j.tcs.2018.04.001 doi: 10.1016/j.tcs.2018.04.001 |
[21] | H. R. Hind, O. R. Oellermann, Menger-type results for three or more vertices, Congr. Numer., 113 (1996), 179–204. |
[22] | A. Itai, M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform. Comput., 79 (1988), 43–59. https://doi.org/10.1016/0890-5401(88)90016-8 doi: 10.1016/0890-5401(88)90016-8 |
[23] | S. Ku, B. Wang, T. Hung, Constructing edge- disjoint spanning trees in product networks, IEEE T. Parall. Distr., 14 (2003), 213–221. |
[24] | W. Mader, Über die Maximalzahl kantendisjunkter A-Wege, Arch. Math., 30 (1978), 325–336. |
[25] | W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math., 31 (1978), 387–402. |
[26] | H. Li, Y. Ma, W. Yang, Y. Wang, The generalized $3$-connectivity of graph products, Appl. Math. Comput., 295 (2017), 77–83. https://doi.org/10.1016/j.amc.2016.10.002 doi: 10.1016/j.amc.2016.10.002 |
[27] | S. Li, J. Tu, C. Yu, The generalized $3$-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput., 274 (2016), 41–46. https://doi.org/10.1016/j.amc.2015.11.016 doi: 10.1016/j.amc.2015.11.016 |
[28] | X. Li, Y. Mao, Generalized connectivity of graphs, Springer Briefs in Mathematics, Springer, Switzerland, 2016. |
[29] | X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Comb., 58 (2014), 304–319. https://doi.org/10.7151/dmgt.1907 doi: 10.7151/dmgt.1907 |
[30] | C. S. J. A. Nash-Williams, Edge-disjonint spanning trees of finite graphs, J. London Math. Soc., 36 (1961), 445–450. |
[31] | O. R. Oellermann, Connectivity and edge-connectivity in graphs: A survey, Congr. Numer., 116 (1996), 231–252. |
[32] | O. R. Oellermann, On the $\ell$-connectivity of a graph, Graph. Combinator., 3 (1987), 285–299. |
[33] | O. R. Oellermann, A note on the $\ell$-connectivity function of a graph, Congr. Numer., 60 (1987), 181–188. |
[34] | F. Okamoto, P. Zhang, The tree connectivity of regular complete bipartite graphs, J. Comb. Math. Comb. Comput., 74 (2010), 279–293. |
[35] | K. Ozeki, T. Yamashita, Spanning trees: A survey, Graph. Combinator., 27 (2011), 1–26. https://doi.org/10.1007/s00373-010-0973-2 doi: 10.1007/s00373-010-0973-2 |
[36] | E. Palmer, On the spanning tree packing number of a graph: A survey, Discrete Math., 230 (2001), 13–21. https://doi.org/10.1016/S0012-365X(00)00066-2 doi: 10.1016/S0012-365X(00)00066-2 |
[37] | G. Sabidussi, Graphs with given group and given graph theoretical properties, Can. J. Math., 9 (1957), 515–525. https://doi.org/10.4153/CJM-1957-060-7 doi: 10.4153/CJM-1957-060-7 |
[38] | N. A. Sherwani, Algorithms for $VLSI$ physical design automation, 3Ed., Kluwer Acad. Pub., London, 1999. |
[39] | S. $\breve {\rm{S}}$pacapan, Connectivity of Cartesian products of graphs, Appl. Math. Lett., 21 (2008), 682–685. |
[40] | D. West, Introduction to graph theory, 2Ed., Prentice Hall, 2001. |
[41] | C. Yang, J. Xu, Connectivity of lexicographic product and direct product of graphs, Ars Combinatoria, 111 (2013), 3–12. |
[42] | Y. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discrete Math., 135 (1994), 359–365. https://doi.org/10.1016/0012-365X(93)E0092-I doi: 10.1016/0012-365X(93)E0092-I |
[43] | S. Zhao, R. Hao, E. Cheng, Two kinds of generalized connectivity of dual cubes, Discrete Appl. Math., 257 (2019), 306–316. https://doi.org/10.1016/j.dam.2018.09.025 doi: 10.1016/j.dam.2018.09.025 |