
In this paper, we consider a pseudo-parabolic equation with the Atangana-Baleanu Caputo fractional derivative. Our main tool here is using fundamental tools, namely the Fractional Tikhonov method and the generalized Tikhonov method, the error estimate is shown. Finally, we provided numerical experiments to prove the correctness of our theory.
Citation: Nguyen Duc Phuong, Le Dinh Long, Devender Kumar, Ho Duy Binh. Determine unknown source problem for time fractional pseudo-parabolic equation with Atangana-Baleanu Caputo fractional derivative[J]. AIMS Mathematics, 2022, 7(9): 16147-16170. doi: 10.3934/math.2022883
[1] | Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146 |
[2] | Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of $ \varphi- $Caputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278 |
[3] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[4] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[5] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[6] | Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058 |
[7] | Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736 |
[8] | M. Mossa Al-Sawalha, Osama Y. Ababneh, Rasool Shah, Amjad khan, Kamsing Nonlaopon . Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators. AIMS Mathematics, 2023, 8(1): 2308-2336. doi: 10.3934/math.2023120 |
[9] | Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros . Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives. AIMS Mathematics, 2024, 9(7): 18324-18355. doi: 10.3934/math.2024894 |
[10] | Reetika Chawla, Komal Deswal, Devendra Kumar, Dumitru Baleanu . A novel finite difference based numerical approach for Modified Atangana- Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(9): 17252-17268. doi: 10.3934/math.2022950 |
In this paper, we consider a pseudo-parabolic equation with the Atangana-Baleanu Caputo fractional derivative. Our main tool here is using fundamental tools, namely the Fractional Tikhonov method and the generalized Tikhonov method, the error estimate is shown. Finally, we provided numerical experiments to prove the correctness of our theory.
The fractional diffusion equation has been of significant interest for many decades and has many important applications in practice, where mathematical formulas are abstract and can be used to provide procedures for converting outside measurements into information about inside properties thus increasingly interested in the study of inverse problems and unknown sources for partial differential equations [1,2,3,4,5,6,7,8,9,10,11]. So, PDEs with fractional derivatives are a generalization of equations with integer-order partial derivatives, please see in the reference [12,13,14,15,16,17,18,19,20,21,22]. In this paper, we consider time-fractional PDE
{ABC0Dαt(u(t,x)+kAu(t,x))+Au(t,x)=θ(t)f(x),in(0,T]×D,u(t,x)=0,on(0,T]×∂D,u(T,x)=g(x),inD, | (1.1) |
Here the Atangana-Baleanu Caputo derivative ABC0Dαtu(t,x) is defined by
ABC0Dαtu(t,x)=L(α)1−αt∫0∂u(s,x)∂sEα,1(−α(t−s)α1−α)ds, | (1.2) |
where L(α) satisfies L(α)=1−α+αΓ(α), and L(0)=L(1)=1, and Eα,1(−α(t−s)α1−α) is the Mittag-Leffler function is introduced in Section 2. The problem (1.1) can be considered in the following two cases:
The case α=1 : System (1.1) is called pseudo-parabolic. There are many works on the well-posedness of the pseudo-parabolic equation with classical derivative, see [23,24,25,26], here the condition u(T,x) is replaced by the initial condition u(0,x). An important goal in the scientific community is to investigate the existence, uniqueness, and stability of fractional differential equations (1.1).
The case α≠1: System (1.1) is called the fractional pseudo-parabolic equation. From the given data θ and the measured data at the final time g∈L2(Ω), we recovered the source function f(x). The problem (1.1) is severely ill-posed. The problem (1.1) is called the classical pseudo-parabolic equation. The problem (1.1) is considered with the right hand side of function F(t,x)=θ(t)f(x). In this case, we would like to take a look at some related issues as follows:
● In case θ(t)=1,k=0 and Dαt is the Caputo derivative, then (1.1) is called the fractional diffusion equation, and this type has been surveyed a lot, see in [27,28,29].
● In case θ(t)≠1,k=0, and Dαt is the Caputo derivative, there are a number of studies on this case, see in [30,31].
● In case θ(t)≠1,k≠0, with Dαt is Atangana - Baleanu fractional derivative, until now, according to our understanding, we did not find papers to solve this case.
Our problem recover of a space-dependent source function f(x) along with subject to the homogeneous initial condition. When exact data (θ,g) is given, observed data (θϵ,gϵ) will inevitably be noisy by
‖θ−θϵ‖L∞(0,T)+‖g−gϵ‖L2(D)≤ϵ. | (1.3) |
Regarding the regularization methods, in [32], Ting Wei used a quasi boundary value method. In [33], Tuan-Long-Thinh used the Tikhonov regularization method. In [34], with a general filter method, the authors studied the problem of finding the source distribution for the linear bi-parabolic equation when we have the final observation. In [35], Zhang with the truncation regularization method. In [36], Yang and his group used fractional Tikhonov to identify the initial value problem for a time-fractional diffusion equation. In [37], Cheng and co-authors used iteration regularization to solve a time-fractional inverse diffusion problem in the frequency domain. The Landweber regularization method, see in [38,39]. In [40], Binh and co-authors studied an inverse source problem for the Rayleigh–Stokes problem using the Tikhonov method. In [41], Ma and his group identified the unknown space-dependent source term in a time-fractional diffusion equation by applying the generalized and revised generalized Tikhonov regularization methods.
However, to the best acknowledgment, the Tikhonov regularization method is very famous. Over the past decade, some modified Tikhonov methods have begun to be researched by mathematicians, such as the Fractional Tikhonov regularization method used in this article was considered by Smina Djennadi and his colleagues, see [42], and the generalized Tikhonov method can be found in reference [41]. For the reader's convenience, we would like to outline the main results:
● We give the ill-posedness of our inverse source problem.
● The first goal of this paper is to provide the fractional Tikhonov method to solve this inverse space-dependent source problem for the fractional pseudo-parabolic equation.
● The second goal of this paper is to provide the A generalized Tikhonov to solve the (1.1).
● And then finally, we provide an example of the illustration of the correctness of our theory and conclude this article.
The layout of this article is as follows. We show the preliminaries and Lemma is used. In Section 3, we have the mild solution of Problem (1.1) and the condition stability for Problem (1.1) in Theorem 3.1. In Sections 4 and 5, we have the error estimate between the exact solution and its approximation by the Fractional Tikhonov and The generalized Tikhonov method. In Section 6, we have one example numerical experiment.
Let us recall that the spectral problem
{−Δen(x)=λnen(x),inΩ,en(x)=0,on∂Ω, | (2.1) |
admits a family of eigenvalues
0<λ1≤λ2≤λ3≤...≤λn≤...↗∞. |
For all r≥0, we define by Ar the following operator
Arh=∞∑n=1⟨h,φn⟩λrnen,h∈H(Ar)={h∈L2(D): ∞∑n=1|⟨h,en⟩|2λ2rn<∞}. | (2.2) |
The domain H(Ar) is the Banach space equipped with the norm
‖h‖H(Ar)=(∞∑n=1|⟨h,en⟩|2λ2rn)12,h∈H(Ar). |
Definition 2.1 ([43]). The definition of the Mittag-Leffler function as follows
Eα,β(z)=∞∑n=1znΓ(αn+β),z∈C, | (2.3) |
where α,β are arbitrary constants.
Lemma 2.1. ([43]) Let 0<α<1. Then there exist positive constants A1,A2,A3 such that
A11+y≤Eα,1(−y)≤A21+y,Eα,α(−y)≤A31+y,forally≥0,α∈R. | (2.4) |
Lemma 2.2. For λ>0,α>0 and m∈N, then
dmdtmEα,1(−λtα)=−λtα−mEα,α−m+1(−λtα), | (2.5) |
ddt(tEα,2(−λtα))=Eα,1(−λtα), | (2.6) |
ddt(tα−1Eα,α(−λtα))=−tα−2Eα,α−1(−λtα). | (2.7) |
Lemma 2.3. [33] For t>0, and λ>0, and 0<α<1, we get
∂αtEα,1(−λtα)=−λEα,1(−λtα), |
Lemma 2.4. For α∈(0,1), we put Dα(λn,k)=ξnαL(α)(L(α)+λnξn(1−α))−2, it gives
Dα(λn,k)≥1λnkαL(α)(L(α)λ1ξ1+(1−α))2⋅ | (2.8) |
Proof. First of all, we notice that λnξn=λn1+kλn=λnλn(1λn+k)≥11λ1+k=1λ−11+k, and we have
Dα(λn,k)=ξnαL(α)(L(α)+λnξn(1−α))2≥αL(α)λ2n1+kλn(L(α)λnξn+(1−α))2=kαL(α)λn(L(α)λnξn+(1−α))2≥1λnkαL(α)(L(α)λ1ξ1+(1−α))2⋅ | (2.9) |
Lemma 2.5. Let α∈(0,1), by denoting
Hα(λn,k)=αλnξn(L(α)+λnξn(1−α))−1,Gα(λn,k,s)=Eα,α(−Hα(λn,k)(t−s)α)(t−s)α−1. | (2.10) |
and ξn=(1+kλn)−1, then we get the following estimate
(1−αα)(T−A2Hα(λ1,k)T1−α1−α)≤T∫0Gα(λn,k,s)ds≤1Hα(λn,k). | (2.11) |
Proof. For Eα,α(−y)≥0 for 0<α<1 and y≥0, and using Lemma 2.1, we obtain
a)T∫0Gα(λn,k,s)ds≥1Hα(λn,k)T∫0(1−Eα,1(−Hα(λn,k)tα))dt≥(1−αα)(T∫0dt−T∫0Eα,1(−Hα(λn,k)tα))dt)≥(1−αα)(T−A2Hα(λ1,k)T∫0t−αdt)≥(1−αα)(T−A2Hα(λ1,k)T1−α1−α), | (2.12) |
b)T∫0Gα(λn,k,s)ds=−1Hα(λn,k)T∫0dds(Eα,1(−Hα(λn,k)(t−s)α))ds=1Hα(λn,k)(Hα(λn,k))−1(1−Eα,1(−Hα(λn,k)tα))≤1Hα(λn,k)⋅ | (2.13) |
Lemma 2.6 ([42]). For constant N>0, s≥λ1, and 12≤σ<1, then we get
sN2σ+[γ(ϵ)]s2σ≤C2[γ(ϵ)]−12σ, | (2.14) |
where C2=C2(σ,N)>0 is independent on s and σ.
Lemma 2.7 ([42]). For constant s≥λ1, with 12≤σ<1, we obtain
[γ(ϵ)]s(2σ−r)N2σ+s2σ[γ(ϵ)]≤{C4(σ,r,N)[γ(ϵ)]r2σ,0<r≤2σ,C5(σ,r,λ1)[γ(ϵ)]r>2σ. | (2.15) |
where C4=C4(σ,r,N) and C5=C5(σ,r,N,λ1).
Lemma 2.8 ([42]). For constant s≥λ1>0, and 12≤σ<1, we get
[γ(ϵ)]s(2σ−1−r)N2σ+s2σ[γ(ϵ)]≤{C6(σ,r,N)[γ(ϵ)]r+12σ,0<r≤2σ−1,C7(σ,r,N,λ1)[γ(ϵ)]r>2σ−1. | (2.16) |
Lemma 2.9. Let θ0,θ1 are positive constants such that θ0<θ<θ1. By choosing ϵ∈(0,θ14), and B(θ0,θ1)=θ1+θ04, we obtain
θ04≤|θϵ(t)|≤B(θ0,θ1). | (2.17) |
Proof. This provision was detailed in [5]. We omit it here.
In this section, we consider a linear problem as follows
{ABC0Dα(u(t,x)+kAu(t,x))+Au(t,x)=F(t,x),in(0,T]×D,u(t,x)=0,on(0,T]×∂D,u(0,x)=u0(x),inD, | (3.1) |
where u0 and F are given functions. Let u(t,x)=∑∞n=1un(t)en(x) be the Fourier series in L2(Ω) with un(t)=∫Du(t,x)en(x)dx, then we have the fractional integro-differential equation involving the Atangana-Baleanu fractional derivative in the form
ABC0Dαt(1+kλn)un(t)+λnun(t)=Fn(t), | (3.2) |
along with the following condition un(0)=∫Du(0,x)en(x)dx, and Fn(0)=λnun(0), using Lemma 3.4 in [43], the solution (3.1) is written by Fourier series as follows
un(t)=L(α)L(α)+λn1+kλn(1−α)Eα,1(−αλn1+kλntαL(α)+λn1+kλn(1−α))u0,n+(11+kλn)1−αL(α)+λn1+kλn(1−α)Fn(t)+(11+kλn)αL(α)(L(α)+λn1+kλn(1−α))2t∫0Eα,α(−αλn1+kλn(t−s)αL(α)+λn1+kλn(1−α))(t−s)α−1Fn(s)ds. | (3.3) |
From now on, for a shorter, we put ξn=(1+kλn)−1, this implies that
u(t,x)=∞∑n=1L(α)L(α)+λnξn(1−α)Eα,1(−αλnξntαL(α)+λnξn(1−α))(∫Du(0,x)en(x)dx)en(x),+∞∑n=1ξn(1−α)L(α)+λnξn(1−α)(∫DFn(t)en(x)dx)en(x)+∞∑n=1ξnαL(α)(L(α)+λnξn(1−α))2t∫0Eα,α(−αλnξn(t−s)αL(α)+λnξn(1−α))(t−s)α−1(∫DFn(s)en(x)dx)dsen(x). | (3.4) |
Let t=T and noting that u(0,x)=0, F(t,x)=θ(t)f(x), and θ(T)=0, we find that
∫Dg(x)en(x)dx=(∫Df(x)en(x)dx)ξnαL(α)(L(α)+λnξn(1−α))2T∫0Eα,α(−αλnξn(T−s)αL(α)+λnξn(1−α))(T−s)α−1θ(s)ds. | (3.5) |
Let us denote and (2.10), we have
Dα(λn,k)=ξnαL(α)(L(α)+λnξn(1−α))−2,Hα(λn,k)=αλnξn(L(α)+λnξn(1−α))−1. | (3.6) |
From (3.5) and (3.6), this leads to
∫Dg(x)en(x)dx=(∫Df(x)en(x)dx)Dα(n,k)T∫0Gα(λn,k,s)θ(s)ds, | (3.7) |
and we can rewrite the formula (3.8) as follows:
(∫Df(x)en(x)dx)=(∫Dg(x)en(x)dx)(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)−1⋅ | (3.8) |
and
f(x)=∞∑n=1(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)−1(∫Dg(x)en(x)dx)en(x). | (3.9) |
with Dα(λn,k) are defined as (3.6).
Theorem 3.1. The inverse problem (1.1) is ill-posed.
Proof. A linear operator K:L2(D)→L2(D) as follows.
Kf(x)=∞∑n=1(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)(∫Df(x)en(x)dx)en(x)=∫Dp(x,ξ)f(ξ)dξ. | (3.10) |
where
p(x,ξ)=∞∑n=1(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)en(x)en(ξ). |
It is obvious that p(x,ξ)=p(ξ,x), we know that K is self-adjoint operator. Next, its compactness is considered and the finite rank operators as follows:
KNf(x)=∑n≤N(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)(∫Df(x)en(x)dx)en(x). | (3.11) |
From (3.8), we find that the problem of seeking f(x) can be transformed into the following operator equation:
(Kf)(x)=g(x)=∑n≤N(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)(∫Df(x)en(x)dx)en(x). | (3.12) |
where KN:f→g is a linear operator. To prove that KN is a compact operator, defining KN the finite rank operator as
(KNf)(x)=∑n≤N(Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds)(∫Df(x)en(x)dx)en(x). | (3.13) |
Using the estimate of Lemma 2.5, we notice that Dα,β(λn,k)T∫0Gα,β(λn,k,s)θ(s)ds≤θ1λn⋅
So, the ‖KNf−Kf‖L2(D) can be bounded as follows:
‖KNf−Kf‖L2(D)≤∑n≥Nθ1λn|∫Df(x)en(x)dx|2≤θ21N2‖f‖2L2(D)⋅ | (3.14) |
Hence, ‖KNf−Kf‖L2(D)→0 in the sense of L(L2(D),L2(D))as N→∞ and K is a linear operator. Next, we show one example to illustrate the non-well posed of problem (1.1). Considering the input final data gm(x)=em(x)(λm)−12 and gm=0 and the corresponding source solution fm(x)=em(x)(√λmDα(λm,k)T∫0Gα(λm,k,s)θ(s)ds)−1 and f(x)=0. The error estimate in L2 between gm and g is
‖gm−g‖L2(D)=1√λm→0,asm→∞. | (3.15) |
Applying Lemma 2.5, then the corresponding error between source fm and f is
‖fm−f‖L2(D)≥√λmθ1→∞,asm→∞. | (3.16) |
From the condition (3.15) and (3.16), we conclude that the problem (3.13) is non-well posed.
Theorem 3.2. Let r>0, and f∈H(Ar(D)) such that
‖f‖H(Ar(D))≤E,E>0. | (3.17) |
Then we have
‖f‖L2(D)≤|Vα(λ1,k,T,A2,θ0)|−rr+1E1r+1‖g‖rr+1. | (3.18) |
where
Vα(λ1,k,T,A2,θ0)=θ04kL(α)(L(α)λ1ξ1+(1−α))2(T(1−α)−A2T1−αHα(λ1,k))⋅ | (3.19) |
Proof. This theorem can refer similarly in [43]. We omit here.
To get the regularized solution with the given data gϵ(x)∈L2(D), minimizing the quantity Jσ[γ(ϵ)](f)∈L2(D) such that
Jσγ(ϵ)(f)=‖Kf−g‖2σ+[γ(ϵ)]‖f‖2L2(D), | (4.1) |
whereby [γ(ϵ)] is a regularization parameter, and ‖.‖σ is a weighted seminorm defined as ‖ξ‖σ=‖W12ξ‖L2(D) for any ξ with W=(K∗K)σ−1 some of parameter 12≤σ<1 called the fractional parameter. In here, we have some reviews as follows:
● In case σ=12, it is the quasi-boundary value method, interested readers can find a view in the document [42].
● In case σ=1, it is classical Tikhonov regularization method, this method is fully described in the following documents [33].
● For 12<σ<1, it is the new fractional Tikhonov regularization.
The minimizer f satisfy the norm equation
((K∗K)[γ(ϵ)]+σI)fσ=(K∗K)σ−1K∗g. | (4.2) |
Using the singular decomposition for the compact self-adjoint operator, we get
fσγ(ϵ)(x)=∞∑n=1|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2σ+[γ(ϵ)](∫Dg(x)en(x)dx)en(x),12≤σ<1. | (4.3) |
For the observed data, we have
fσϵ,γ(ϵ)(x)=∞∑n=1|Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|2σ+[γ(ϵ)](∫Dgϵ(x)en(x)dx)en(x),12≤σ<1. | (4.4) |
Next, with two formulas of regularized in (4.3) and (4.4), we consider the convergent rate of ‖f−fσε,γ(ε)‖L2(D), by discussing how to select the regularization parameter, with a-priori strategies.
In this subpart, under a suitable choice for the regularization parameter [γ(ϵ)], we will give an error estimate for ‖f−fσϵ,γ(ϵ)‖L2(D).
Lemma 4.1. Assume that the condition (1.3) holds, then we have
‖fσγ(ϵ)−fσϵ,γ(ϵ)‖L2(D)≤C2[γ(ϵ)]−12σϵ+max{ϵ,[γ(ϵ)]1−12σ}(32θ20+2θ21λ2β1C22)12‖f‖L2(D). | (4.5) |
Proof. To prove this Lemma, we have used two formulas (4.3), (4.4), for 12≤σ<1, we have
fσγ(ϵ)(x)−fσϵ,γ(ϵ)(x)=∞∑n=1|Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θε(s)ds|2σ+[γ(ϵ)](∫D(gϵ(x)−g(x))en(x)dx)en(x)⏟E1+∞∑n=1[|Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|2σ+[γ(ϵ)]−|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2σ+[γ(ϵ)]](∫Dg(x)en(x)dx)en(x).⏟E2 | (4.6) |
Now, we need establish the upper bound of ‖fσγ(ϵ)−fσε,γ(ε)‖L2(D). For convenience, we consider the following step.
Step1:_ Estimate of E1, with V depends on α,λ1,k,T,A2 and ‖gϵ−g‖L2(D)≤ϵ, applying Lemma 2.6 with s=λn, we get
E21≤supn≥1(|B(θ0,θ1)|2σ−1λn|Vα|2σ+λ2σn[γ(ϵ)])2ϵ2≤C22[γ(ϵ)]−1σϵ2. | (4.7) |
whereby Vα is defined as (3.19) and C2 depends on V,σ and B.
Step2:_ Estimate of E2, applying the inequality (a+b)2≤2a2+2b2, after simple transformation steps, we have
E22≤2([Dα(λn,k)T∫0Gα(λn,k,s)(θε(s)−θ(s))ds|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds||Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|])2(∫Dg(x)en(x)dx)2+2([γ(ϵ)]|Dα(λn,k)T∫0Gα(λn,k,s)θε(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|(|Dα(λn,k,s)T∫0Gα(λn,k,s)θε(s)ds|2σ+[γ(ϵ)]))2(∫Df(x)en(x)dx)2≤(32ϵ2θ20+2[γ(ϵ)]2θ21λ2β1(|Dα(λn,k)T∫0Gα(λn,k,s)θε(s)ds|2σ−1|Dα(λn,k)T∫0Gα(λn,k,s)θε(s)ds|2σ+[γ(ϵ)])2)(∫Df(x)en(x)dx)2. | (4.8) |
From (4.8), the right hand side can be bounded as follow:
E22≤(32ε2θ20+2θ21λ2β1C22[γ(ϵ)]2−1σ)‖f‖2L2(D). | (4.9) |
Combining (4.6) to (4.9), we have
‖fσγ(ϵ)−fσϵ,γ(ϵ)‖L2(D)≤C2[γ(ϵ)]−12σϵ+(32ε2θ20+2θ21λ2β1C22[γ(ϵ)]2−1σ)12‖f‖L2(D). | (4.10) |
Lemma 4.2. Suppose that f∈Hr(D), then it gives
‖fϵγ(ϵ)−f‖L2(D)≤{C4(σ,r,Vα)[γ(ϵ)]r2σE,0<r≤2σ,C5(σ,r,λ1)[γ(ϵ)]E,r>2σ. | (4.11) |
Proof. From (3.8) and (4.3), we received
‖fσγ(ϵ)−f‖2L2(D)≤‖∞∑n=1([γ(ϵ)]|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2σ+[γ(ϵ)])(∫Dg(x)en(x)dx)|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|‖2L2(D)≤‖∞∑n=1([γ(ϵ)]λ−rn|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2σ+[γ(ε)])λrn(∫Df(x)en(x)dx)‖2L2(D)≤supn≥1([γ(ϵ)]λ2σ−rn|4Vα|2σ+λ2σn[γ(ϵ)])2‖f‖Hr(D). | (4.12) |
Due to Lemma 4.2, the upper bound of the right hand side of (4.12) as follows:
● If r∈(0,2σ), then we have
‖fσγ(ϵ)−f‖L2(D)≤C4(σ,r,V)[γ(ϵ)]r2σE. | (4.13) |
● If r≥2σ, then we have
‖fσγ(ϵ)−f‖L2(D)≤C5(σ,r,λ1)[γ(ϵ)]E. | (4.14) |
Theorem 4.1. Assume that the noise assumption (1.3) are hold, and the a-priori bound condition (3.17). Then we have the following estimate:
● If r∈(0,2σ), by choosing [γ(ϵ)]=(ϵE)2σr+2, then we have
‖f−fσϵ,γ(ϵ)‖L2(D)≤max{ϵr+1r+2,ϵ,ϵ2σ−1r+2,εrr+2}P1. | (4.15) |
where P1 depends on C2,E,θ0,θ1,Vα,C4.
● If r≥2σ, by choosing [γ(ϵ)]=(ϵE)σσ+1, then we have
‖f−fσϵ,γ(ϵ)‖L2(D)≤max{ϵσσ+1,ϵ,ϵσ−1/2σ+1,ϵσσ+1}P2. | (4.16) |
and P2 depends on C2,E,θ0,θ1,λ1,C5.
Proof. Using the triangle inequality, we get
‖f−fσϵ,γ(ϵ)‖L2(D)≤‖f−fσγ(ϵ)‖L2(D)+‖fσγ(ϵ)−fσϵ,γ(ϵ)‖L2(D)⋅ | (4.17) |
From (4.3), (4.4), results from Lemma 4.1 and Lemma 4.2, Theorem 4.1 is proven.
From [41], we have a stable solution to problem (1.1) with the observed data (gϵ,θϵ) by generalized Tihkhonov regularization method which minimizes the quantity
J(fϵ,[γ(ϵ)])=‖Kf−gϵ‖2L2(D)+[γ(ϵ)]‖f‖2Hr(D), | (5.1) |
Let fϵ,[γ(ϵ)] be a solution of the problem (5.1) which satisfies
K∗Kfϵ,[γ(ϵ)]+[γ(ϵ)]λ2rnfϵ,[γ(ϵ)]=K∗gϵ. | (5.2) |
Using the SVD for compact self-adjoint operator, we get
fϵ,[γ(ϵ)](x)=∞∑n=1|Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds||Dα(λn,k)T∫0Gα(λn,k,s)θϵ(s)ds|2+[γ(ϵ)]λ2rn(∫Dgϵ(x)en(x)dx)en(x), | (5.3) |
and
f[γ(ϵ)](x)=∞∑n=1|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds||Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2+[γ(ϵ)]λ2rn(∫Dg(x)en(x)dx)en(x). | (5.4) |
Lemma 5.1. Assume that f∈Hr(D) holds, assume that the couple (g,θ) is noised by (gϵ,θϵ) such that the condition (1.3) satisfies, then we have
‖f[γ(ϵ)]−fϵ,[γ(ϵ)]‖L2(D)≤ϵ2[γ(ϵ)]λ2r1+5ϵθ0‖f‖L2(D). | (5.5) |
Proof. From (5.3) and (5.4), we have
fγ(ϵ)(x)−fϵ,γ(ϵ)(x)≤Z1+Z2+Z3. | (5.6) |
whereby Z1,Z2 and Z3 are defined in (5.7) as follows:
![]() |
(5.7) |
The proof falls naturally into three parts.
Step1:_ Estimate of Z1, we have
‖Z1‖2L2(D)≤14[γ(ϵ)]∞∑n=11λ2rn(∫D(gϵ(x)−g(x))en(x)dx)2≤ϵ24[γ(ϵ)]λ2r1⋅ | (5.8) |
Step2:_ Estimate of Z2, it gives
![]() |
(5.9) |
Step3:_ Estimate of Z3, we have
‖Z3‖2L2(D)≤∞∑n=1|Dα(λn,k)T∫0Gα(λn,k,s)(θ(s)−θε(s))ds|2|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2|Dα(λn,k)T∫0Gα(λn,k,s)θε(s)ds|2(∫Dg(x)en(x)dx)2≤∞∑n=1‖θ−θϵ‖L∞(0,T)|Dα(λn,k)T∫0Gα(λn,k,s)ds|2|Dα(λn,k)T∫0Gα(λn,k,s)θε(s)ds|2(∫Dg(x)en(x)dx)2|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2≤16ϵ2θ20‖f‖2L2(D). | (5.10) |
Combining (5.8)–(5.10), we get
‖fϵ−fϵ,[γ(ϵ)]‖L2(D)≤ϵ2[γ(ϵ)]12λr1+5ϵθ0‖f‖L2(D). | (5.11) |
Lemma 5.2. Suppose that f∈Hr(D), then we have
● If r>1, then we have
‖f−fγ(ϵ)‖L2(D)≤R2(λ1,r,θ0,Vα,E)[γ(ϵ)]12. | (5.12) |
● If r∈(0,1), then we have
‖f−fγ(ϵ)‖L2(D)≤(R1(θ0,Vα,E))12[γ(ϵ)]rr+1. | (5.13) |
whereby R1(θ0,Vα,E)=((2θ0Vα)−2E2+E2) and R2(λ1,r,θ0,Vα,E)=λ(1−r)12θ0VαE.
Proof. From (5.4) and (3.8), we get:
‖f−f[γ(ϵ)]‖L2(D)=∞∑n=1[γ(ϵ)]λ2rn(∫Dg(x)en(x)dx)|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|[[γ(ϵ)]λ2rn+|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2]=∞∑n=1[γ(ϵ)]λ2rn(∫Dg(x)en(x)dx)|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|[[γ(ϵ)]λ2rn+|Dα(λn,k)T∫0Gα(k,β,λn,s)θ(s)ds|2]≤supn∈N|V(n)|∞∑n=1λ2rn(∫Dg(x)en(x)dx)|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|=supn∈N|W(n)|‖f‖Hr(D), | (5.14) |
Hence, W(n) is given by
V(n)=[γ(ε)][γ(ε)]λ2rn+|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2⋅ | (5.15) |
Next, Estimate of V(n), we have
W(n)≤[γ(ϵ)]2[γ(ϵ)]12λrn|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|≤[γ(ϵ)]12λ1−rn2θ0Vα⋅ | (5.16) |
We divide into two following cases
● If r≥1, then we have
‖f−f[γ(ϵ)]‖L2(D)≤[γ(ϵ)]12λ(1−r)12θ0VαE. | (5.17) |
● If r∈(0,1), then we consider λ1−rn satisfies the following two cases :
λ1−rn≤[γ(ε)]−ℓandλ1−rn>[γ(ε)]−ℓ. | (5.18) |
then we rewrite N by N=Q1∪Q2 where
Q1={n∈N,λ1−rn≤[γ(ε)]−ℓ},Q2={n∈N,λ1−rn>[γ(ϵ)]−ℓ}. | (5.19) |
From (5.15) and (5.18), we have:
‖f−f[γ(ϵ)]‖2L2(D)=supn∈Q1[[γ(ϵ)]12λ1−rn2θ0Vα]2∑n∈Q1λ2rn(∫Df(x)en(x)dx)2+∑n∈Q2[[γ(ε)][γ(ε)]λ2rn+|Dα(λn,k)T∫0Gα(λn,k,s)θ(s)ds|2]2λ2rn(∫Df(x)en(x)dx)2≤(2θ0Vα)−2[γ(ϵ)]1−2ℓ‖f‖2Hr(D)+supn∈Q2λ−4rn∑n∈Q2λ2rn(∫Df(x)en(x)dx)2≤(2θ0Vα)−2[γ(ϵ)]1−2ℓ‖f‖2Hr(D)+[γ(ϵ)]4rℓ1−r‖f‖2Hr(D). | (5.20) |
Choose ℓ=1−r2(1+r), we have
‖f−f[γ(ϵ)]‖2L2(D)≤[γ(ϵ)]2rr+1((2θ0Vα)−2E2+E2). | (5.21) |
Theorem 5.1. Let θϵ,θ∈L∞(0,T) such that ‖θϵ−θ‖L∞(0,T)≤ϵ and (θ,θε) satisfy the condition in Lemma (2.9), and the noise assumption (3.17) hold. By choosing the regularization parameter [γ(ϵ)]=(ϵE), we receive
● If r>1, then we have
‖f−fϵ,γ(ϵ)‖L2(D)≤ϵ12(R2(λ1,r,θ0,Vα)E12+E1212λr1+5ε12‖f‖L2(D)θ0). | (5.22) |
● If r∈(0,1), then we have
‖f−fϵ,γ(ϵ)‖L2(D)≤ϵrr+1(R1(θ0,Vα,E))12+E1r+112λr1+5ε1r+1‖f‖L2(D)θ0)⋅ | (5.23) |
whereby R1(θ0,Vα,E)=((2θ0Vα)−2E2+E2) and R2(λ1,r,θ0,Vα)=λ(1−r)12θ0Vα.
Proof. By the triangle inequality, we have
‖f−fϵ,γ(ϵ)‖L2(D)≤‖f−fγ(ϵ)‖L2(D)+‖fγ(ϵ)−fϵ,γ(ϵ)‖L2(D). | (5.24) |
Combining Lemma 5.1 and Lemma 5.2, we have
● If r>1, then we have
‖f−fϵ,γ(ϵ)‖L2(D)≤is of orderε12. | (5.25) |
● If r∈(0,1), then we have
‖f−fϵ,γ(ϵ)‖L2(D)is of orderεrr+1. | (5.26) |
This theorem is proven.
In this section, we present one numerical example. By choosing Ω=(0,π), T=1, α=0.95, and σ=0.45, and r=0.25 k=0.01 are shown in this section, respectively. For computing the generalized Mittag-Leffler function and the accuracy control in computing is 10−10, we have the Matlab codes given by Podlubny [44]. To do this, we consider the problem as follows:
ABC0Dαt(u(t,x)+kΔu(t,x))+Δu(t,x)=θ(t)f(x),(x,t)∈(0,π)×(0,1). | (6.1) |
where ABC0Dαtu(x,t) is the Atangana-Baleanu fractional derivative is given by (1.2). In this calculation, we chose the operator Δu=∂2∂x2u, we have chosen λn=n2,n=1,2,... and en(x) = √2πsin(nx), respectively. We have the function
g(x)=√2πsin(4x),θ(t)=((1−16k)Γ(4)t3−αΓ(4−α)−16t3). | (6.2) |
In general, the whole numerical procedure is summarized in the following steps:
Step1:_ Finite difference to discretize the time and spatial variable for x∈(0,π) as follows:
xk=kΔx,0≤k≤N,Δx=πN⋅ |
Step2:_ The input data (g,θ) is noised by observation data (gε,θε) such that
θϵ=θ+1πϵ(2rand(⋅)−1),gϵ=g+1πϵ(2rand(⋅)−1). | (6.3) |
Step3:_ The relative error estimation is defined by
Error1=(N∑n=1‖fσϵ,γ(ϵ)(xn)−f(xn)‖2L2(0,π)N∑n=1‖f(xn)‖2L2(0,π))12,Error2=(N∑n=1‖fϵ,γ(ϵ)(xn)−f(xn)‖2L2(0,π)N∑n=1‖f(xn)‖2L2(0,π))12, | (6.4) |
where Error1 is the error estimate between the exact solution and the regularized solution by the Fractional Tikhonov method, and Error2 is the error estimate between the exact solution and the regularized solution by generalized Tikhonov method. In addition, taking for the priori parameter choice rule of E is large enough. By [43], we get
∫10xγ−1(1−x)β−1Eα,β(z(1−x)α)dx=Γ(β)Eα,α+β(z). | (6.5) |
From (6.5), by replacing β=α, and z=−αn21+kn2L(α)+n21+kn2(1−α), we can find that
1∫0xγ−1(1−x)α−1Eα,α(−αn21+kn2L(α)+n21+kn2(1−α))dx=Γ(γ)Eα,α+γ(−αn21+kn2L(α)+n21+kn2(1−α))⋅ | (6.6) |
From (3.9), we have the exact solution
f(x)=2πN∑n=1(Dα(n2,k)T∫0Gα(n2,k,s)θ(s)ds)−1(π∫0g(x)sin(nx))sin(nx). | (6.7) |
From (4.4), by choosing the regularization parameter γ(ϵ)=(ϵE)12, with N is a truncation number large enough, we have the regularized solution with Fractional Tikhonov as follows
fσϵ,γ(ϵ)(x)=2πN∑n=1|Dα(n2,k)1∫0Gα(n2,k,s)θϵ(s)ds|2σ−1|Dα(n2,k)1∫0Gα(n2,k,s)θϵ(s)ds|2σ+(ϵE)12(π∫0gϵ(x)sin(nx)dx)sin(nx), | (6.8) |
From (5.3), with the Generalized Tikhonov method, and γ(ϵ)=ϵE, we receive
fϵ,[γ(ϵ)](x)=2πN∑n=1|Dα(n2,k)1∫0Gα(n2,k,s)θϵ(s)ds||Dα(n2,k)1∫0Gα(n2,k,s)θϵ(s)ds|2+(ϵE)n4r(π∫0gϵ(x)sin(nx)dx)sin(nx), | (6.9) |
and Dα(n2,k) is defined in Lemma 2.4. From (6.6), the integral ∫10Gα(n2,k,s)θϵ(s)ds calculated
1∫0Gα(n2,k,s)θϵ(s)ds=n21+kn2αL(α)(L(α)+n21+kn2(1−α))21∫0Eα,α(−αn21+kn2L(α)+n21+kn2(1−α)(1−s)α)(1−s)α−1θϵ(s)ds=(1−16k)Γ(4)Eα,4(−αn21+kn2L(α)+n21+kn2(1−α))−16Γ(4)Eα,α+4(−αn21+kn2L(α)+n21+kn2(1−α))+1πϵ(2rand(⋅)−1)L(α)+n21+kn2(1−α)αn21+kn2(1−Eα,1(−αn21+kn2L(α)+n21+kn2(1−α))). | (6.10) |
In these calculations, we choose N=100 and ϵ=0.5, ϵ=0.25 and ϵ=0.125. Figure 1(a) shows the 2D graphs of the source function with the exact solution and its approximation for the case by the Fractional Tikhonov method. Figure 1(b) shows the error estimate between the exact solution and regularized solution for the case by the Fractional Tikhonov method. Figure 2(a) shows the 2D graphs of the source function with the exact solution and its approximation for the case by the generalized Tikhonov method. Figure 2(b) shows the error estimate between the exact solution and regularized solution for the case by the generalized Tikhonov method, respectively. Figure 3 shows the 2D graphs of the source function and its approximation, by two methods with ϵ=0.5, ϵ=0.25 and ϵ=0.125, respectively. The error estimates between the source function with the exact data and the measurement data are presented in Table 1. From the observations above, the approximation results are acceptable.
α=0.95 | ||
Err1 | Err2 | |
ϵ=0.5 | 0.292922331 | 0.292928835 |
ϵ=0.25 | 0.159947533 | 0.152469901 |
ϵ=0.125 | 0.101037573 | 0.095171607 |
In this study, we applied the Fractional Tikhonov method and the Generalized Tikhonov method to regularize the inverse problem to identify an unknown source term in fractional diffusion equations involving fractional derivative with Atangana-Baleanu Caputo derivative. This problem (1.1) is ill-posed in the sense of Hadamard. So, Under a priori parameter choice rule, we show the result for the convergent estimate between the sought solution and the regularized solution. Finally, we show an example to illustrate our proposed regularization.
This research is supported by Industrial University of Ho Chi Minh City (IUH) under grant number 130/HD-DHCN. Le Dinh Long is thankful to Van Lang University.
The authors declare no conflict of interest.
[1] |
S. Tatar, S. Ulusoy, Analysis of direct and inverse problems for a fractional elastoplasticity model, Filomat, 31 (2017), 699–708. https://doi.org/10.2298/FIL1703699T doi: 10.2298/FIL1703699T
![]() |
[2] | B. Azzaoui, B. Tellab, K. Zennir, Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces, Math. Method. Appl. Sci., 2021, in press. https://doi.org/10.1002/mma.7623 |
[3] |
A. Boulfoul, B. Tellab, N. Abdellouahab, K. Zennir, Existence and uniqueness results for initial value problem of nonlinear fractional integro‐differential equation on an unbounded domain in a weighted Banach space, Math. Method. Appl. Sci., 44 (2021), 3509–3520. https://doi.org/10.1002/mma.6957 doi: 10.1002/mma.6957
![]() |
[4] |
D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag‐Leffler law, Math. Method. Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903
![]() |
[5] |
D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. https://doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3
![]() |
[6] |
M. Kirane, S. A. Malik, M. A. Al-Gwaiz, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math Method. Appl. Sci., 36 (2013), 1056–1069. https://doi.org/10.1002/mma.2661 doi: 10.1002/mma.2661
![]() |
[7] |
M. Khirani, B. Tellab, K. Haouam, K. Zennir, Global nonexistence of solutions for Caputo fractional differential inequality with singular potential term, Quaest. Math., 45, (2022), 723–732. https://doi.org/10.2989/16073606.2021.1891990 doi: 10.2989/16073606.2021.1891990
![]() |
[8] | S. Tatar, R. Tinaztepe, S. Ulusoy, Determination of an unknown source term in a space-time fractional diffusion equation, Journal of Fractional Calculus and Applications, 6 (2015), 83–90. |
[9] |
N. A. Triet, V. V. Au, L. D. Long, D. Baleanu, N. H. Tuan, Regularization of a terminal value problem for time fractional diffusion equation, Math. Method. Appl. Sci., 43 (2020), 3850–3878. https://doi.org/10.1002/mma.6159 doi: 10.1002/mma.6159
![]() |
[10] |
G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7
![]() |
[11] |
K. Zennir, T. Miyasita, Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory, Alex. Eng. J., 59 (2020), 957–964. https://doi.org/10.1016/j.aej.2020.03.016 doi: 10.1016/j.aej.2020.03.016
![]() |
[12] |
V. V. Au, H. Jafari, Z. Hammouch, N. H. Tuan, On a final value problem for a nonlinear fractional pseudo-parabolic equation, Electron. Res. Arch., 29 (2021), 1709–1734. https://doi.org/10.3934/era.2020088 doi: 10.3934/era.2020088
![]() |
[13] |
D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. https://doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3
![]() |
[14] |
D. Kumar, J. Singh, D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, Eur. Phys. J. Plus, 133 (2018), 70. https://doi.org/10.1140/epjp/i2018-11934-y doi: 10.1140/epjp/i2018-11934-y
![]() |
[15] |
D. Kumar, D. Baleanu, Fractional calculus and its applications in physics, Front. Phys., 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081 doi: 10.3389/fphy.2019.00081
![]() |
[16] |
J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515. https://doi.org/10.1016/j.amc.2017.08.048 doi: 10.1016/j.amc.2017.08.048
![]() |
[17] |
J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local fractional wave equation in fractal strings, Math. Method. Appl. Sci., 42 (2019), 1588–1595. https://doi.org/10.1002/mma.5458 doi: 10.1002/mma.5458
![]() |
[18] |
J. Singh, H. K. Jassim, D. Kumar, An efficient computational technique for local fractional Fokker Planck equation, Physica A, 555 (2020), 124525. https://doi.org/10.1016/j.physa.2020.124525 doi: 10.1016/j.physa.2020.124525
![]() |
[19] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Academic Press, 1974. |
[20] | J. F. Gómez, L. Torres, R. F. Escobar, Fractional derivatives with Mittag-Leffler kernel: trends and applications in science and engineering, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-11662-0 |
[21] | K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[22] |
N. H. Tuan, Y. E. Aghdam, H. Jafari, H. Mesgarani, A novel numerical manner for two‐dimensional space fractional diffusion equation arising in transport phenomena, Numer. Methods Partial Differential Equations, 37 (2021), 1397–1406. https://doi.org/10.1002/num.22586 doi: 10.1002/num.22586
![]() |
[23] |
H. Chen, H. Y. Xu, Global existence and blow-up in finite time for a class of finitely degenerate semilinear pseudo-parabolic equations, Acta Math. Sin.-English Ser., 35 (2019), 1143–1162. https://doi.org/10.1007/s10114-019-8037-x doi: 10.1007/s10114-019-8037-x
![]() |
[24] |
H. Chen, H. Y. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185–1203. https://doi.org/10.3934/dcds.2019051 doi: 10.3934/dcds.2019051
![]() |
[25] |
H. Ding, J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393–420. https://doi.org/10.1016/j.jmaa.2019.05.018 doi: 10.1016/j.jmaa.2019.05.018
![]() |
[26] |
H. Di, Y. Shang, X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. B, 21 (2016), 781–801. https://doi.org/10.3934/dcdsb.2016.21.781 doi: 10.3934/dcdsb.2016.21.781
![]() |
[27] |
A. Qian, Y. Li, Optimal error bound and generalized Tikhonov regularization for identifying an unknown source in the heat equation, J. Math. Chem., 49 (2011), 765–775. https://doi.org/10.1007/s10910-010-9774-3 doi: 10.1007/s10910-010-9774-3
![]() |
[28] |
F. Yang, C. L. Fu, A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model., 34 (2010), 3286–3299. https://doi.org/10.1016/j.apm.2010.02.020 doi: 10.1016/j.apm.2010.02.020
![]() |
[29] |
F. Yang, C. L. Fu, The revised generalized Tikhonov regularization for the inverse time-dependent heat source problem, J. Appl. Math. Comput., 41 (2013), 81–98. https://doi.org/10.1007/s12190-012-0596-2 doi: 10.1007/s12190-012-0596-2
![]() |
[30] |
N. H. Tuan, M. Kirane, L. V. C. Hoan, L. D. Long, Identification and regularization for unknown source for a time-fractional diffusion equation, Comput. Math. Appl., 73 (2017), 931–950. https://doi.org/10.1016/j.camwa.2016.10.002 doi: 10.1016/j.camwa.2016.10.002
![]() |
[31] |
J. G. Wang, T. Wei, Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation, Appl. Math. Model., 39 (2015), 6139–6149. https://doi.org/10.1016/j.apm.2015.01.019 doi: 10.1016/j.apm.2015.01.019
![]() |
[32] |
T. Wei, J. G. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95–111. https://doi.org/10.1016/j.apnum.2013.12.002 doi: 10.1016/j.apnum.2013.12.002
![]() |
[33] |
N. H. Tuan, L. D. Long, N. V. Thinh, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40 (2016), 8244–8264. https://doi.org/10.1016/j.apm.2016.04.009 doi: 10.1016/j.apm.2016.04.009
![]() |
[34] |
D. H. Q. Nam, L. D. Long, D. O'Regan, T. B. Ngoc, N. H. Tuan, Identification of the right-hand side in a bi-parabolic equation with final data, Appl. Anal., 101 (2022), 1157–1175. https://doi.org/10.1080/00036811.2020.1775817 doi: 10.1080/00036811.2020.1775817
![]() |
[35] |
Z. Q. Zhang, T. Wei, Identifying an unknown source in time-fractional diffusion equation by a truncation method, Appl. Math. Comput., 219 (2013), 5972–5983. https://doi.org/10.1016/j.amc.2012.12.024 doi: 10.1016/j.amc.2012.12.024
![]() |
[36] |
F. Yang, Q. Pu, X. X. Li, The fractional Tikhonov regularization methods for identifying the initial value problem for a time-fractional diffusion equation, J. Comput. Appl. Math., 380 (2020), 112998. https://doi.org/10.1016/j.cam.2020.112998 doi: 10.1016/j.cam.2020.112998
![]() |
[37] |
H. Cheng, C. L. Fu, An iteration regularization for a time-fractional inverse diffusion problem, Appl. Math. Model., 36 (2012), 5642–5649. https://doi.org/10.1016/j.apm.2012.01.016 doi: 10.1016/j.apm.2012.01.016
![]() |
[38] |
S. Z. Jiang, Y. J. Wu, Recovering space-dependent source for a time-space fractional diffusion wave equation by fractional Landweber method, Inverse Probl. Sci. Eng., 29 (2021), 990–1011. https://doi.org/10.1080/17415977.2020.1815724 doi: 10.1080/17415977.2020.1815724
![]() |
[39] |
Y. Han, X. Xiong, X. Xue, A fractional Landweber method for solving backward time-fractional diffusion problem, Comput. Math. Appl., 78 (2019), 81–91. https://doi.org/10.1016/j.camwa.2019.02.017 doi: 10.1016/j.camwa.2019.02.017
![]() |
[40] |
T. T. Binh, K. N. Hemant, L. D. Long, N. H. Luc, C. Nguyen, Identification of source term for the ill-posed Rayleigh–Stokes problem by Tikhonov regularization method, Adv. Differ. Equ., 2019 (2019), 331. https://doi.org/10.1186/s13662-019-2261-7 doi: 10.1186/s13662-019-2261-7
![]() |
[41] |
K. M. Yong, P. Prakash, A. Deiveegan, Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation, Chaos Soliton. Fract., 108 (2018), 39–48. https://doi.org/10.1016/j.chaos.2018.01.003 doi: 10.1016/j.chaos.2018.01.003
![]() |
[42] |
D. Smina, S. Nabil, A. A. Omar, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
![]() |
[43] |
N. H. Can, N. H. Luc, D. Baleanu, Y. Zhou, L. D. Long, Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 210. https://doi.org/10.1186/s13662-020-02657-2 doi: 10.1186/s13662-020-02657-2
![]() |
[44] | I. Podlubny, M. Kacenak, Mittag-leffler function. The MATLAB routine, 2006. Available from: http://www.mathworks.com/matlabcentral/fileexchange. |
1. | Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani, Analysis of Cauchy problem with fractal-fractional differential operators, 2023, 56, 2391-4661, 10.1515/dema-2022-0181 | |
2. | Wenyi Liu, Chengbin Du, Zhiyuan Li, New type of the unique continuation property for a fractional diffusion equation and an inverse source problem, 2024, 2024, 1687-2770, 10.1186/s13661-024-01827-5 | |
3. | Shahid Ahmed, Shah Jahan, Kottakkaran S. Nisar, Hybrid Fibonacci wavelet method to solve fractional‐order logistic growth model, 2023, 46, 0170-4214, 16218, 10.1002/mma.9446 | |
4. | Vo Tri, Continuous dependence on parameters of differential inclusion using new techniques of fixed point theory, 2023, 37, 0354-5180, 5469, 10.2298/FIL2316469T |
α=0.95 | ||
Err1 | Err2 | |
ϵ=0.5 | 0.292922331 | 0.292928835 |
ϵ=0.25 | 0.159947533 | 0.152469901 |
ϵ=0.125 | 0.101037573 | 0.095171607 |