In this paper, we consider a pseudo-parabolic equation with the Atangana-Baleanu Caputo fractional derivative. Our main tool here is using fundamental tools, namely the Fractional Tikhonov method and the generalized Tikhonov method, the error estimate is shown. Finally, we provided numerical experiments to prove the correctness of our theory.
Citation: Nguyen Duc Phuong, Le Dinh Long, Devender Kumar, Ho Duy Binh. Determine unknown source problem for time fractional pseudo-parabolic equation with Atangana-Baleanu Caputo fractional derivative[J]. AIMS Mathematics, 2022, 7(9): 16147-16170. doi: 10.3934/math.2022883
In this paper, we consider a pseudo-parabolic equation with the Atangana-Baleanu Caputo fractional derivative. Our main tool here is using fundamental tools, namely the Fractional Tikhonov method and the generalized Tikhonov method, the error estimate is shown. Finally, we provided numerical experiments to prove the correctness of our theory.
[1] | S. Tatar, S. Ulusoy, Analysis of direct and inverse problems for a fractional elastoplasticity model, Filomat, 31 (2017), 699–708. https://doi.org/10.2298/FIL1703699T doi: 10.2298/FIL1703699T |
[2] | B. Azzaoui, B. Tellab, K. Zennir, Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces, Math. Method. Appl. Sci., 2021, in press. https://doi.org/10.1002/mma.7623 |
[3] | A. Boulfoul, B. Tellab, N. Abdellouahab, K. Zennir, Existence and uniqueness results for initial value problem of nonlinear fractional integro‐differential equation on an unbounded domain in a weighted Banach space, Math. Method. Appl. Sci., 44 (2021), 3509–3520. https://doi.org/10.1002/mma.6957 doi: 10.1002/mma.6957 |
[4] | D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag‐Leffler law, Math. Method. Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903 |
[5] | D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. https://doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3 |
[6] | M. Kirane, S. A. Malik, M. A. Al-Gwaiz, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math Method. Appl. Sci., 36 (2013), 1056–1069. https://doi.org/10.1002/mma.2661 doi: 10.1002/mma.2661 |
[7] | M. Khirani, B. Tellab, K. Haouam, K. Zennir, Global nonexistence of solutions for Caputo fractional differential inequality with singular potential term, Quaest. Math., 45, (2022), 723–732. https://doi.org/10.2989/16073606.2021.1891990 doi: 10.2989/16073606.2021.1891990 |
[8] | S. Tatar, R. Tinaztepe, S. Ulusoy, Determination of an unknown source term in a space-time fractional diffusion equation, Journal of Fractional Calculus and Applications, 6 (2015), 83–90. |
[9] | N. A. Triet, V. V. Au, L. D. Long, D. Baleanu, N. H. Tuan, Regularization of a terminal value problem for time fractional diffusion equation, Math. Method. Appl. Sci., 43 (2020), 3850–3878. https://doi.org/10.1002/mma.6159 doi: 10.1002/mma.6159 |
[10] | G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7 |
[11] | K. Zennir, T. Miyasita, Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory, Alex. Eng. J., 59 (2020), 957–964. https://doi.org/10.1016/j.aej.2020.03.016 doi: 10.1016/j.aej.2020.03.016 |
[12] | V. V. Au, H. Jafari, Z. Hammouch, N. H. Tuan, On a final value problem for a nonlinear fractional pseudo-parabolic equation, Electron. Res. Arch., 29 (2021), 1709–1734. https://doi.org/10.3934/era.2020088 doi: 10.3934/era.2020088 |
[13] | D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. https://doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3 |
[14] | D. Kumar, J. Singh, D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, Eur. Phys. J. Plus, 133 (2018), 70. https://doi.org/10.1140/epjp/i2018-11934-y doi: 10.1140/epjp/i2018-11934-y |
[15] | D. Kumar, D. Baleanu, Fractional calculus and its applications in physics, Front. Phys., 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081 doi: 10.3389/fphy.2019.00081 |
[16] | J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515. https://doi.org/10.1016/j.amc.2017.08.048 doi: 10.1016/j.amc.2017.08.048 |
[17] | J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local fractional wave equation in fractal strings, Math. Method. Appl. Sci., 42 (2019), 1588–1595. https://doi.org/10.1002/mma.5458 doi: 10.1002/mma.5458 |
[18] | J. Singh, H. K. Jassim, D. Kumar, An efficient computational technique for local fractional Fokker Planck equation, Physica A, 555 (2020), 124525. https://doi.org/10.1016/j.physa.2020.124525 doi: 10.1016/j.physa.2020.124525 |
[19] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, Academic Press, 1974. |
[20] | J. F. Gómez, L. Torres, R. F. Escobar, Fractional derivatives with Mittag-Leffler kernel: trends and applications in science and engineering, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-11662-0 |
[21] | K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[22] | N. H. Tuan, Y. E. Aghdam, H. Jafari, H. Mesgarani, A novel numerical manner for two‐dimensional space fractional diffusion equation arising in transport phenomena, Numer. Methods Partial Differential Equations, 37 (2021), 1397–1406. https://doi.org/10.1002/num.22586 doi: 10.1002/num.22586 |
[23] | H. Chen, H. Y. Xu, Global existence and blow-up in finite time for a class of finitely degenerate semilinear pseudo-parabolic equations, Acta Math. Sin.-English Ser., 35 (2019), 1143–1162. https://doi.org/10.1007/s10114-019-8037-x doi: 10.1007/s10114-019-8037-x |
[24] | H. Chen, H. Y. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185–1203. https://doi.org/10.3934/dcds.2019051 doi: 10.3934/dcds.2019051 |
[25] | H. Ding, J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393–420. https://doi.org/10.1016/j.jmaa.2019.05.018 doi: 10.1016/j.jmaa.2019.05.018 |
[26] | H. Di, Y. Shang, X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. B, 21 (2016), 781–801. https://doi.org/10.3934/dcdsb.2016.21.781 doi: 10.3934/dcdsb.2016.21.781 |
[27] | A. Qian, Y. Li, Optimal error bound and generalized Tikhonov regularization for identifying an unknown source in the heat equation, J. Math. Chem., 49 (2011), 765–775. https://doi.org/10.1007/s10910-010-9774-3 doi: 10.1007/s10910-010-9774-3 |
[28] | F. Yang, C. L. Fu, A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model., 34 (2010), 3286–3299. https://doi.org/10.1016/j.apm.2010.02.020 doi: 10.1016/j.apm.2010.02.020 |
[29] | F. Yang, C. L. Fu, The revised generalized Tikhonov regularization for the inverse time-dependent heat source problem, J. Appl. Math. Comput., 41 (2013), 81–98. https://doi.org/10.1007/s12190-012-0596-2 doi: 10.1007/s12190-012-0596-2 |
[30] | N. H. Tuan, M. Kirane, L. V. C. Hoan, L. D. Long, Identification and regularization for unknown source for a time-fractional diffusion equation, Comput. Math. Appl., 73 (2017), 931–950. https://doi.org/10.1016/j.camwa.2016.10.002 doi: 10.1016/j.camwa.2016.10.002 |
[31] | J. G. Wang, T. Wei, Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation, Appl. Math. Model., 39 (2015), 6139–6149. https://doi.org/10.1016/j.apm.2015.01.019 doi: 10.1016/j.apm.2015.01.019 |
[32] | T. Wei, J. G. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95–111. https://doi.org/10.1016/j.apnum.2013.12.002 doi: 10.1016/j.apnum.2013.12.002 |
[33] | N. H. Tuan, L. D. Long, N. V. Thinh, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40 (2016), 8244–8264. https://doi.org/10.1016/j.apm.2016.04.009 doi: 10.1016/j.apm.2016.04.009 |
[34] | D. H. Q. Nam, L. D. Long, D. O'Regan, T. B. Ngoc, N. H. Tuan, Identification of the right-hand side in a bi-parabolic equation with final data, Appl. Anal., 101 (2022), 1157–1175. https://doi.org/10.1080/00036811.2020.1775817 doi: 10.1080/00036811.2020.1775817 |
[35] | Z. Q. Zhang, T. Wei, Identifying an unknown source in time-fractional diffusion equation by a truncation method, Appl. Math. Comput., 219 (2013), 5972–5983. https://doi.org/10.1016/j.amc.2012.12.024 doi: 10.1016/j.amc.2012.12.024 |
[36] | F. Yang, Q. Pu, X. X. Li, The fractional Tikhonov regularization methods for identifying the initial value problem for a time-fractional diffusion equation, J. Comput. Appl. Math., 380 (2020), 112998. https://doi.org/10.1016/j.cam.2020.112998 doi: 10.1016/j.cam.2020.112998 |
[37] | H. Cheng, C. L. Fu, An iteration regularization for a time-fractional inverse diffusion problem, Appl. Math. Model., 36 (2012), 5642–5649. https://doi.org/10.1016/j.apm.2012.01.016 doi: 10.1016/j.apm.2012.01.016 |
[38] | S. Z. Jiang, Y. J. Wu, Recovering space-dependent source for a time-space fractional diffusion wave equation by fractional Landweber method, Inverse Probl. Sci. Eng., 29 (2021), 990–1011. https://doi.org/10.1080/17415977.2020.1815724 doi: 10.1080/17415977.2020.1815724 |
[39] | Y. Han, X. Xiong, X. Xue, A fractional Landweber method for solving backward time-fractional diffusion problem, Comput. Math. Appl., 78 (2019), 81–91. https://doi.org/10.1016/j.camwa.2019.02.017 doi: 10.1016/j.camwa.2019.02.017 |
[40] | T. T. Binh, K. N. Hemant, L. D. Long, N. H. Luc, C. Nguyen, Identification of source term for the ill-posed Rayleigh–Stokes problem by Tikhonov regularization method, Adv. Differ. Equ., 2019 (2019), 331. https://doi.org/10.1186/s13662-019-2261-7 doi: 10.1186/s13662-019-2261-7 |
[41] | K. M. Yong, P. Prakash, A. Deiveegan, Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation, Chaos Soliton. Fract., 108 (2018), 39–48. https://doi.org/10.1016/j.chaos.2018.01.003 doi: 10.1016/j.chaos.2018.01.003 |
[42] | D. Smina, S. Nabil, A. A. Omar, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127 |
[43] | N. H. Can, N. H. Luc, D. Baleanu, Y. Zhou, L. D. Long, Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 210. https://doi.org/10.1186/s13662-020-02657-2 doi: 10.1186/s13662-020-02657-2 |
[44] | I. Podlubny, M. Kacenak, Mittag-leffler function. The MATLAB routine, 2006. Available from: http://www.mathworks.com/matlabcentral/fileexchange. |