In this paper, the geominimal integral curvature on the convex body is introduced. The existence and uniqueness of the geominimal integral curvature are proved. Some other properties for the geominimal integral curvature, such as continuity, are investigated.
Citation: Shuang Mou. The geominimal integral curvature[J]. AIMS Mathematics, 2022, 7(8): 14338-14353. doi: 10.3934/math.2022790
In this paper, the geominimal integral curvature on the convex body is introduced. The existence and uniqueness of the geominimal integral curvature are proved. Some other properties for the geominimal integral curvature, such as continuity, are investigated.
[1] | A. D. Aleksandrov, Existence and uniqueness of a convex surface with a given integral curvature, Acad. Sci. USSR, 35 (1942), 131–134. |
[2] | K. J. B$\mathrm{\ddot{o}}$r$\mathrm{\ddot{o}}$czky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), 1974–1997. https://doi.org/ 10.1016/j.aim.2012.07.015 doi: 10.1016/j.aim.2012.07.015 |
[3] | Y. Feng, B. He, The Orlicz Aleksandrov problem for Orlicz integral curvature, Int. Math. Res. Not., 2021 (2021), 5492–5519. https://doi.org/10.1093/imrn/rnz384 doi: 10.1093/imrn/rnz384 |
[4] | R. J. Gardner, Geometric tomography, Cambridge Univ. Press, Cambridge, 1995. |
[5] | P. M. Gruber, Convex and discrete geometry, Springer-Verlag, Berlin Heidelberg, 2007. |
[6] | Y. Huang, E. Lutwak, D. Yang, G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325–388. https://doi.org/10.1007/s11511-016-0140-6 doi: 10.1007/s11511-016-0140-6 |
[7] | Y. Huang, E. Lutwak, D. Yang, G. Zhang, The Lp-Aleksandrov problem for Lp-integral curvature, J. Differ. Geom., 110 (2018), 1–29. https://doi.org/10.4310/jdg/1536285625 doi: 10.4310/jdg/1536285625 |
[8] | Q. Li, W. Sheng, X. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22 (2020), 893–923. https://doi.org/10.4171/JEMS/936 doi: 10.4171/JEMS/936 |
[9] | N. Li, S. Mou, The general dual orlicz geominimal surface area, J. Funct. Space., 2020 (2020), 1–6. https://doi.org/10.1155/2020/1387269 doi: 10.1155/2020/1387269 |
[10] | M. Ludwig, General affine surface areas, Adv. Math., 224 (2010), 2346–2360. https://doi.org/10.1016/j.aim.2010.02.004 |
[11] | M. Ludwig, M. Reitzner, A characterization of affine surface area, Adv. Math., 147 (1999), 138–172. https://doi.org/10.1006/aima.1999.1832 doi: 10.1006/aima.1999.1832 |
[12] | X. Luo, D. Ye, B. Zhu, On the polar Orlicz-Minkowski problems and the $p$-capacitary Orlicz-Petty bodies, Indiana U. Math. J., 69 (2020), 385–420. https://doi.org/10.1512/iumj.2020.69.7777 doi: 10.1512/iumj.2020.69.7777 |
[13] | E. Lutwak, Dual mixed volume, Pac. J. Math., 58 (1975), 531–538. https://doi.org/10.2140/pjm.1975.58.531 |
[14] | E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125 (1987), 351–360. https://doi.org/10.1016/0022-247X(87)90097-7 |
[15] | E. Lutwak, Centroid bodies and dual mixed volumes, P. Lond. Math. Soc., 2 (1990), 365–391. https://doi.org/10.1112/plms/s3-60.2.365 doi: 10.1112/plms/s3-60.2.365 |
[16] | E. Lutwak, The Brunn-Minkowski-Firey theory II. Affine and geominimal surface areas, Adv. Math., 118 (1996), 244–294. https://doi.org/10.1006/aima.1996.0022 doi: 10.1006/aima.1996.0022 |
[17] | E. Lutwak, D. Yang, G. Zhang, $L_p$ dual curvature measures, Adv. Math., 329 (2018), 85–132. https://doi.org/10.1016/j.aim.2018.02.011 doi: 10.1016/j.aim.2018.02.011 |
[18] | S. Mou, B. Zhu, The orlicz-minkowski problem for measure in $R^n$ and Orlicz geominimal measures, Int. J. Math., 30 (2019), 1950052. https://doi.org/10.1142/S0129167X19500526 doi: 10.1142/S0129167X19500526 |
[19] | V. Oliker, Hypersurfaces in $R^{n+1}$ with prescribed Gaussian curvature and related equations of Monge-Amp$\grave{e}$re type, Commun. Part. Diff. Eq., 9 (1984), 807–838. https://doi.org/10.1080/03605308408820348 doi: 10.1080/03605308408820348 |
[20] | V. Oliker, Embedding $S^{n-1}$ into $R^{n+1}$ with given integral Gauss curvature and optimal mass transport on $S^{n-1}$, Adv. Math., 213 (2007), 600–620. https://doi.org/10.1016/j.aim.2007.01.005 doi: 10.1016/j.aim.2007.01.005 |
[21] | C. M. Petty, Geominimal surface area, Geometriae Dedicata, 3 (1974), 77–97. https://doi.org/10.1007/BF00181363 |
[22] | P. Guan, Y. Li, $C^{1, 1}$ estimates for solutions of a problem of Alexandrov, Commun. Pure Appl. Math., 50 (1997), 189–811. https://doi.org/10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.0.CO;2-2 doi: 10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.0.CO;2-2 |
[23] | L. A. Santal$\mathrm{\acute{o}}$, Un invariante afin para los cuerpos convexos del espacio de $n$-dimensiones, Port. Math., 8 (1949), 155–161. |
[24] | R. Schneider, Convex Bodies: The Brunn-Minkowski theory, second edition, Cambridge Univ. Press, 2014. |
[25] | W. Wang, Q. Chen, Lp Dual geominimal surface area, J. Ineq. Appl., 6 (2011), 264–275. |
[26] | D. Ye, $L_p$ geominimal surface areas and their inequalities, Int. Math. Res. Not., 2015 (2015), 2465–2498. https://doi.org/10.1093/imrn/rnu009 doi: 10.1093/imrn/rnu009 |
[27] | D. Ye, Dual Orlicz-Brunn-Minkowski theory: Dual Orlicz $L_{\phi}$ affine and geominimal surface areas, J. Math. Anal. Appl., 443 (2016), 352–371. https://doi.org/10.1016/j.jmaa.2016.05.027 doi: 10.1016/j.jmaa.2016.05.027 |
[28] | D. Ye, B. Zhu, J. Zhou, The mixed $L_p$ geominimal surface area for multiple convex bodies, Indiana U. Math. J., 64 (2015), 1513–1552. https://doi.org/10.1512/iumj.2015.64.5623 doi: 10.1512/iumj.2015.64.5623 |
[29] | S. Yuan, H. Jin, G. Leng, Orlicz geominimal surface areas, Math. Ineq. Appl., 18 (2015), 353–362. https://doi.org/10.7153/mia-18-25 doi: 10.7153/mia-18-25 |
[30] | B. Zhu, J. Zhou, W. Xu, Lp mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247–1263. https://doi.org/10.1016/j.jmaa.2014.09.035 doi: 10.1016/j.jmaa.2014.09.035 |
[31] | B. Zhu, N. Li, J. Zhou, Isoperimetric inequalities for $L_p$ geominimal surface area, Glasg. Math. J. 53 (2011), 717–726. https://doi.org/10.1017/S0017089511000292 |