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1. Introduction

The geominimal surface area belongs to the research category of convex geometric analysis.
The classical geominimal surface area, which can be dated back to 1974, was firstly introduced by
Petty [21], in his paper, the classical Petty body was obtained and some classical affine isoperimetric
inequalities were established. With the development of the Lp-Brunn-Minkowski theory, the classical
geominimal surface area has been extended to Lp cases by Lutwak [14] ( for p > 1) and Ye [26]
(for −n , p < 1) (also see [28, 30]). The dual Lp-Brunn-Minkowski theory was introduced by
Lutwak [13, 15]. Wang and Chen [25] introduced the dual Lp geominimal surface area. For more
results of the geominimal surface area, one can refer to [9–11, 18, 27, 29, 31] and so on.

We shall work in the n-dimensional Euclidean space Rn with the standard inner product x · y of x
and y in Rn. For x ∈ Rn, write |x| =

√
x · x for the Euclidean norm of x. We call a set K ⊂ Rn is convex

if provided that for any two points x, y ∈ K and λ ∈ [0, 1], one has λx + (1 − λ)y ∈ K. A convex subset
K ⊂ Rn is called a convex body if K is compact with nonempty interior, and the interior point of a
convex body K can be written as intK. Moreover, if for any two points x, y ∈ K (x , y) and λ ∈ (0, 1),
λx + (1 − λ)y ∈ intK holds, we call the convex body K is a strictly convex.

Throughout this paper, let Kn be the class of all convex bodies in Rn and Kn
0 be the class of all

convex bodies in Rn that contain the origin in their interiors andKn
e be the class of all origin-symmetric

convex bodies in Rn. The standard Lebesgue measure of a set K in Rn will be denoted by |K|, we call
|K| is the n-dimensional volume of a set K ∈ Kn. The volume radius of the convex body K is defined
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as vrad(K) = (|K|/ωn)1/n. The origin-symmetric unit ball in n-dimensional Euclidean space is denote
by Bn

2, i.e., Bn
2 = {x ∈ Rn : |x| ≤ 1}, and we use ωn to denote the volume of the unit ball Bn

2. We use
S n−1 to denote the unit sphere in Rn, and we let κn be the surface area measure of Bn

2. Let K|u⊥ be the
orthogonal projection of K onto the subspace orthogonal to u and Vn−1(K|u⊥) be the (n−1)-dimensional
volume of K|u⊥. Let C(S n−1) be the set of continuous functions defined on the unit sphere S n−1.

As we all know, the notion of geominimal surface area was introduced by Petty [21]. For K ∈ Kn
0 ,

the geominimal surface area of K, is defined by the following optimal problem:

inf
{ ∫

S n−1
hQ(u)dS (K, u) : Q ∈ Kn

s and |Q∗| = ωn

}
. (1.1)

Here Q∗ denotes polar body of Q, hQ(·) is the support function of convex body Q (see Section 2), Kn
s

is the class of convex bodies in Rn whose Santaló points are at origin point o (see [23]), and S (K, ·) is
the surface area measure of convex body K, i.e., for any K ∈ Kn and any measurable subset Ω ⊂ S n−1,
the surface area measure S (K,Ω), is defined by

S (K,Ω) =

∫
ν−1

K (Ω)
dHn−1,

where ν−1
K : S n−1 → ∂K is the inverse Gauss map and Hn−1 is the (n − 1)-dimensional Hausdorff

measure on ∂K.
In [16], Lutwak extended over body Q restricted to Kn

0 . It follows that

inf
{ ∫

S n−1
hQ(u)dS (K, u) : Q ∈ Kn

0 and |Q∗| = ωn

}
. (1.2)

For any two convex bodies K,Q ∈ Kn, the mixed volume V1(K,Q) of K,Q is defined by

V1(K,Q) =
1
n

∫
S n−1

hQ(u)dS (K, u).

Moreover, for any K ∈ Kn, the volume of K is defined by

|K| =
1
n

∫
S n−1

hK(u)dS (K, u). (1.3)

Together with (1.2), one has,

inf{nV1(K,Q) : Q ∈ Kn
0 and |Q∗| = ωn}. (1.4)

Lutwak [16] proved the uniqueness of the solution to (1.4). This shows that the mixed volume V1(·, ·)
is a necessary premise of classical geominimal surface area. Hence, utilizing the relationship between
the minimum surface area and the corresponding mixed volume, one can investigate the geominimal
integral curvature with the help of the mixed entropy.

We define a new concept of the entropy functional of the convex body, i.e., the entropy functional
E(K) of the convex body K ∈ Kn

0 can be defined by

E(K) = −

∫
S n−1

log hK(u)du,
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where the integration is with respect to spherical Lebesgue measure (see, Huang et al. [7]).
For two convex bodies K, L ∈ Kn

0 , the Lp mixed entropy is defined by

Ep(K, L) = lim
ε→0

E(K+̂pε � L) − E(K)
ε

,

where K+̂pε � L is the harmonic Lp combination of K, L for p ≥ 1 and K+̂pε � L ∈ Kn
0 is a new convex

body. In Section 2, we will show that the convex body K+̂pε � L ∈ Kn
0 can be defined for all p ∈ R

and even for negative ε of sufficiently small absolute value. In this paper, we mainly study the mixed
entropy functional when p = 0, i.e., for K, L ∈ Kn

0

E0(K, L) = lim
ε→0

E(K+̂0ε � L) − E(K)
ε

= −

∫
S n−1

log ρL(u)dJ(K, u), (1.5)

where ρL is the radial function of convex body L and J(K, ·) is the Aleksandrov integral curvature of
the convex body K (see Section 2). For some of the the Aleksandrov integral recent resilts, see [1,3,8,
19, 20, 22].

There exists a natural problem: whether there is a convex body L ∈ Kn
0 with |L∗| = ωn such that L

is a solution to the following problem:

inf
{
E0(K,Q) : Q ∈ Kn

0 with |Q∗| = ωn

}
. (1.6)

In this paper, let GE(K) be the geominimal integral curvature of the convex body K ∈ Kn
0 , it can be

defined by optimal problem in (1.6). Together with (1.5), it is equivalent to solve the optimal problem
as follows:

GE(K) = sup
{ ∫

S n−1
log ρQ(u)dJ(K, u) : Q ∈ Kn

0 , |Q
∗| = ωn

}
.

Based on the concept of the Petty body, we will study the entropy form of the Petty body. The following
is our main result.

Theorem 1.1. Let K ∈ Kn
o , then there exists a convex body M ∈ Kn

e with |M∗| = ωn such that∫
S n−1

log ρM(u)dJ(K, u) = sup
{ ∫

S n−1
log ρL(u)dJ(K, u) : L ∈ Kn

e , |L
∗| = ωn

}
.

In addition, in the plane R2, these bodies are unique or their polar bodies are parallelograms with
parallel sides.

This paper is organized as follows. In Section 2, we collect some basic concepts and various facts
that will be used in the proofs of our results. In Section 3, we study the properties of the L0 mixed
entropy. In Section 4, we obtain the existence and uniqueness of the geominimal integral curvature.

2. Background and notation

2.1. Convex bodies

We now introduce some basic facts and standard notations needed in this paper. For more details
and concepts in convex geometry, please see [4, 5, 24].
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The Minkowski sum of two convex sets K and L is denoted by

K + L = {x + y : x ∈ K, y ∈ L}.

The scalar product of λ ∈ R and K ∈ Kn is defined by λK = {λx : x ∈ K}. For any convex body K in
Rn, the support function of K, hK : S n−1 → R, is defined by

hK(u) = max{x · u : x ∈ K}, for all u ∈ S n−1.

For the convex body K and u ∈ S n−1, the hyperplane

HK(u) = {x ∈ Rn : x · u = hK(u)}

is called the supporting hyperplane of K with unit normal u. For x ∈ ∂K, if there is only one supporting
hyperplane of K passing through point x, we call x ∈ ∂K is a smooth point. If there exist more than a
supporting hyperplane of K passing through point x, we call x ∈ ∂K is a singlar point. For each x ∈ ∂K
is a smooth point, we call the convex body K is smooth. If a convex body K is strictly convex and
smooth, we say that K is a regular convex body. For each K ∈ Kn, there exists a regular convex body
sequence Ki such that Ki converges to K as i→ ∞ (see [24]).

Let lu = {tu : t ≥ 0} for u ∈ S n−1. If L∩ lu is a closed line segment for all u ∈ S n−1, we say L ⊂ Rn is
star-shaped with respect to the origin. Let L be compact and star-shaped with respect to the origin, the
radial function ρL : S n−1 → [0,∞) is defined by

ρL(u) = max{λ ≥ 0 : λu ∈ L}, for all u ∈ S n−1.

A compact star-shaped set with respect to the origin is uniquely determined by its radial function. If
ρL is positive and continuous on S n−1, then the star-shaped L is called a star body about the origin. Let
In

0 be the set of all star bodies about the origin. Clearly, the radial function of a convex body in Kn
0 is

continuous and positive, i.e., Kn
0 ⊂ I

n
0. If K ∈ Kn

0 , then

∂K = {ρK(u)u : u ∈ S n−1}.

And the volume of K ∈ Kn
0 can be rewritten by

|K| =
1
n

∫
S n−1

ρn
K(u)du. (2.1)

For Borel set η ⊂ S n−1, let ρ : η → (0,∞) be a continuous function, then the set {ρ(u)u : u ∈ η} is a
Borel set. For a set K ⊂ Rn, the convex hull of K, write convK, is the intersection of all convex sets
containing K. Hence, the convex hull 〈ρ〉 generated by ρ,

〈ρ〉 = conv{ρ(u)u : u ∈ η} (2.2)

is a compact set (see [24]). Let η ⊂ S n−1 always be a closed set and not contained in any great
hemisphere of S n−1, then we have 〈ρ〉 ∈ Kn

0 . By the definition of convex hull of the function ρ, we have

ρ〈ρ〉(u) ≥ ρ(u), for all u ∈ S n−1. (2.3)
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If the function ρ is an even function on S n−1, then the convex hull conv{ρ(u)u : u ∈ S n−1} is an origin-
symmetric body. Thus a convex body K is origin-symmetric if and only if the radial function ρK of the
convex body K is an even function.

The definitions of radial function and support function immediately give that for λ > 0 and K, L ∈
Kn

0 , one has hλK = λhK , ρλK = λρK and hK+L = hK + hL. Moreover

K ⊂ L ⇔ hK(u) ≤ hL(u) and K ⊂ L⇔ ρK(u) ≤ ρL(u), for all u ∈ S n−1.

If K ∈ Kn
0 , the following formulas hold for all u ∈ S n−1,

hK∗(u) =
1

ρK(u)
and ρK∗(u) =

1
hK(u)

, (2.4)

where K∗ is the polar body of K, and it is given by

K∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ K}.

On the setKn, we consider the topology generated by the Hausdorff metric dH(·, ·). For K,K′ ∈ Kn,
the Hausdorff metric dH(K,K′) is defined by

dH(K,K′) = ‖hK − hK′‖∞ = sup
u∈S n−1

|hK(u) − hK′(u)|.

A sequence {Ki}i≥1 ⊂ K
n converges to a convex body K0 ∈ K

n if dH(Ki,K0)→ 0 as i→ ∞, i.e.,

dH(Ki,K0)→ 0 if and only if hKi → hK0 uniformly as i→ ∞.

The radial metric is defined by

dρ(K, L) = ‖ρK − ρL‖∞ = sup
u∈S n−1

|ρK(u) − ρL(u)|

for K, L ∈ In
0. We use the fact that on Kn

0 , the Hausdorrf metric and the radial metric are topologically
equivalent, i.e.,

dH(Ki,K0)→ 0 if and only if dρ(Ki,K0)→ 0

for {Ki}i≥1 ⊂ K
n
0 and K0 ∈ K

n
0 .

If the function f : η→ (0,∞) is continuous, the Wulff shape [ f ] ∈ Kn
0 determined by f is a convex

body defined by
[ f ] =

⋂
u∈η

{x ∈ Rn : x · u ≤ f (u)}.

Note that, if f = hK is a support function of convex body K ∈ Kn
0 , one has

[ f ] = K.

Furthermore, if the function f : η→ (0,∞) is continuous, we have (see e.g., [17] p.95)

[ f ]∗ = 〈1/ f 〉. (2.5)
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The Lp Minkowski combination is a basic concept in the Lp-Brunn-Minkowski theory. For each
p ≥ 1, the Minkowski-Firey Lp-combination K +p L introduced by Firey (see, e.g., [24]) can be defined
by the support function as follows, i.e., for K, L ∈ Kn

0 and a, b > 0

hp
a·K+pb·L = ahp

K + bhp
L.

Now we fix p , 0. For K, L ∈ Kn
0 and a, b > 0, we define the general Lp Minkowski combination,

a · K +p b · L ∈ Kn
0 , via the Wulff shape,

a · K +p b · L = [(ahp
K + bhp

L)1/p].

When p = 0, we define a · K +0 b · L ∈ Kn
0 via the Wulff shape,

a · K +0 b · L = [ha
Khb

L]. (2.6)

Note that “·” is written without its subscript p.
For any p ∈ R, Huang et al. [7] gave the definition of the Lp-harmonic combination (1−λ)�K+̂pλ�

L ∈ Kn
0 , i.e.,

(1 − λ) � K+̂pλ � L = ((1 − λ) · K∗+pλ · L∗)∗. (2.7)

Hence, together with (2.4)–(2.6), we obtain that

[ha
K∗h

b
L∗]
∗ = 〈ρa

Kρ
b
L〉. (2.8)

Let {Ki}
∞
i=1 ⊂ K

n
0 and K ∈ Kn

0 , combined with (2.4), this implies that

Ki → K if and only if K∗i → K∗. (2.9)

2.2. The integral curvature

For a convex body K in Rn, the Gauss image of σ ⊂ ∂K is defined by

νννK(σ) = {v ∈ S n−1 : x ∈ HK(v) for some x ∈ σ} ⊂ S n−1.

The reverse Gauss image of η ⊂ S n−1 is defined by

ννν∗K(η) = {x ∈ ∂K : x ∈ HK(v) for some v ∈ η} ⊂ ∂K.

Let σK = {x : x ∈ ∂K is a singlar point} ⊂ ∂K. It is known that Hn−1(σK) = 0 (see, p.84 of
Schneider [24]). The Gauss map of the convex body K is defined by

νK : ∂K \ σK → S n−1.

From Lemma 2.2.12 of Schneider [24] we know that the Gauss map νK is continuous. The set ηK ⊂

S n−1 consisting of all v ∈ S n−1, for which the set ννν∗K({v}), abbreviated as ννν∗K(v), contains more than a
single element, is ofHn−1-measure 0. The inverse Gauss map of the convex body K is defined by

ν−1
K : S n−1 \ ηK → ∂K,
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From Lemma 2.2.12 of Schneider [24] we also know that the function ν−1
K is continuous.

For K ∈ Kn
0 , define the radial map of the convex body K

rK(·) : S n−1 → ∂K by rK(u) = ρK(u)u ∈ ∂K,

for u ∈ S n−1. Note that r−1
K (·) : ∂K → S n−1 is the map r−1

K (x) = x̄ = x/|x|. For ω ⊂ S n−1, define the
radial Gauss image of ω by

αααK(ω) = νννK(rK(ω)) ⊂ S n−1.

Thus, for u ∈ S n−1

αααK(u) = {v ∈ S n−1 : rK(u) ∈ HK(v)}.

Define the radial Gauss map of the convex body K ∈ Kn
0

αK : S n−1 \ ωK → S n−1 by αK = νK ◦ rK ,

where ωK = {x/|x| : x ∈ σK}.
Define the reverse radial Gauss image of η ⊂ S n−1 by

ααα∗K : S n−1 → S n−1 by ααα−1
K (η) = r−1

K (ννν∗K(η)).

The inverse radial Gauss map of the convex body K ∈ Kn
0 is defined by

α−1
K : S n−1 \ ηK → S n−1 by α−1

K = r−1
K ◦ ν

−1
K .

Note that since both r−1
K and ν−1

K are continuous, α−1
K is continuous.

The integral curvature J(K, ·) of convex body K ∈ Kn
0 is defined by,

J(K, ω) = Hn−1(αααK(ω)), (2.10)

for each Borel set ω ⊂ S n−1. The total integral curvature of convex body K, is the surface area
of the unit sphere S n−1, thus J(K, S n−1) = κn. The concept of integral curvature was introduced by
Aleksandrov.

Following formula (2.10), and characteristic function I on S n−1, then∫
S n−1

Iω(u)dJ(K, u) =

∫
S n−1

IαααK (ω)(u)du =

∫
S n−1

Iω(α−1
K (u))du, (2.11)

the last identity holds from the fact that v ∈ αααK(ω) if and only if α−1
K ∈ ω for almost all u with respect

to the spherical Lebesgue measure (see (2.20) in [6]). Furthermore, from formula (2.11), we have that∫
S n−1

f (u)dJ(K, u) =

∫
S n−1

f (α∗K(u))du (2.12)

for each continuous function f on S n−1.

Lemma 2.1. ([6] Lemma 2.2) Let Ki ∈ K
n
0 be such that limi→∞ Ki = K0 ∈ K

n
0 . Let ω =

⋃∞
i=0 ωKi be

the set (of Hn−1-measure zero) off of which all of the αKi are defined. If ui ∈ S n−1\ω are such that
limi→∞ ui = u0 ∈ S n−1\ω, then limi→∞ αKi(ui) = αK0(u0).
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Lemma 2.2. ([6] Lemma 2.5) Let K ∈ Kn
0 , then

ααα∗K(η) = αααK∗(η)

for each η ⊂ S n−1.

Note that if Ki → K0 in the Hausdorff metric, then for all f ∈ C(S n−1), by formulas (2.9), (2.12),
Lemmas 2.1 and 2.2, one has

lim
i→∞

∫
S n−1

f (u) dJ(Ki, u) =

∫
S n−1

f (u)dJ(K0, u).

This proves that the integral curvature J(K, ·) is weakly convergence measure.

Lemma 2.3. ([12] Lemma 2.1) If a sequence of measures {µi}
∞
i=1 on S n−1 converges weakly to a finite

measure µ on S n−1 and a sequence of functions { fi}i≥1 ⊂ C(S n−1) converges uniformly to a function
f0 ∈ C(S n−1), then

lim
i→∞

∫
S n−1

fi(u) dµi =

∫
S n−1

f0(u) dµ.

Thus, by Lemma 2.3, if { fi}i≥1 ⊂ C(S n−1) is uniformly convergent to f0 ∈ C(S n−1) and {Ki}i≥1 ⊂ K
n
0

converges to K0 ∈ K
n
0 in the Hausdorff metric, together with the weak convergence of J(K, ·), we have

lim
i→∞

∫
S n−1

fi(u) dJ(Ki, u) =

∫
S n−1

f0(u) dJ(K0, u). (2.13)

The Blaschke selection theorem is a powerful tool in convex geometry (see [5, 24]) and will be
often used in this paper. It reads: Every bounded sequence of convex bodies has a subsequence that
converges to a convex set.

We will also use the following lemmas in the proofs of our main results.

Lemma 2.4. (see [12]) If {Ki}i≥1 ⊂ K
n
0 is a bounded sequence and {|K∗i |}i≥1 is also a bounded sequence,

there is a subsequence {Ki j} j≥1 of the sequence {Ki}i≥1 and a body K ∈ Kn
0 such that Ki j → K. In

addition, if |K∗i | = ωn, then |K∗| = ωn.

Lemma 2.5. (see [16]) Let {Ki}i≥1 ⊂ K
n
0 be a convergent sequence with limit K0, i.e., Ki → K0 in the

Hausdorff distance. If the sequence {|K∗i |}i≥1 is bounded, then K0 ∈ K
n
0 .

3. Properties for the L0 mixed entropy E0(K, L)

In this section, we mainly prove some properties for the L0 mixed entropy. We now prove the
continuity of the L0 mixed entropy as follows.

Proposition 3.1. Let {Ki}
∞
i=0 ⊂ K

n
0 and {Li}

∞
i=0 ⊂ K

n
0 be two sequences of convex bodies such that

Ki → K0 ∈ K
n
0 and Li → L0 ∈ K

n
0 as i→ ∞ in the Hausdorff metric, then

E0(Ki, Li)→ E0(K0, L0) as i→ ∞.
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Proof. Since Ki → K0 ∈ K
n
0 and Li → L0 ∈ K

n
0 as i → ∞ in the Hausdorff metric, then J(Ki, ·)

converges weakly to J(K0, ·) and the radial functions ρLi converges uniformly to ρL0 , as i → ∞. And
there are two constants r, R > 0 such that for all i ≥ 1,

rBn
2 ⊂ Li ⊂ RBn

2.

We have r ≤ ρLi ≤ R, for all i ≥ 1. Furthermore, together with the continuity of the logarithmic
function on [r,R], we get

log ρLi(u)→ log ρL0(u) uniformly on S n−1.

By formula (2.13), one has

lim
i→∞
E0(Ki, Li) = lim

i→∞
−

∫
S n−1

log ρLidJ(Ki, u)

= −

∫
S n−1

log ρL0dJ(K0, u)

= E0(K0, L0).

�

Proposition 3.2. Let {Ki}
∞
i=1 ⊂ K

n
0 and K ∈ Kn

0 be regular convex bodies such that Ki → K as i→ ∞ in
the Hausdorff metric. For {Li}

∞
i=1 ⊂ K

n
e , then {E0(Ki, Li)}∞i=1 is bounded and {Li}

∞
i=1 is uniformly bounded

if and only if there exist α, r > 0 such that for all i ≥ 1

rBn
2 ⊂ Li and |L∗i | ≥ α.

Proof. The boundedness of {E0(Ki, Li)}∞i=1 is equivalent to the boundedness of {−E0(Ki, Li)}∞i=1, which
shows that there are constants c and C such that c ≤ −E0(Ki, Li) ≤ C for all i ≥ 1.

We first show that the sequence {Li}
∞
i=1 contains a small ball. For ui ∈ S n−1, let

Ri(ui) = max{ρLi(u) : u ∈ S n−1}.

Since the sequence {Li}
∞
i=1 is bounded, there is a constant β > 0, such that Ri(ui) ≤ β for all i, we have

β−1Bn
2 ⊂ L∗i for all i. Hence

|L∗i | ≥
ωn

βn

for all i.
On the other hand, by the Blaschke selection theorem, there is a subsequence of {Li}

∞
i=1, for

convenience, we still record it as {Li}
∞
i=1, and a compact convex set L0, such that Li → L0 as i → ∞

in the Hausdorff metric, the radial function sequence ρLi is uniformly continuous, we have that ρL0 is
continuous, now we prove that L0 contains a small ball rBn

2, if not, then there is a nonzero set ω and a
sufficiently small real ε > 0 such that ω = {u : ρL0(u) < ε}, according to the regularity of the convex
body K, we have J(K, ω) > 0 and J(K, S n−1\ω) log R < ∞. Thus, by Proposition 3.1,

c ≤ − lim
i→∞
E0(Ki, Li) = −E0(K, L0) =

∫
S n−1

log ρL0(u)dJ(K, u)

≤

∫
ω

log εdJ(K, u) +

∫
S n−1\ω

log ρL0(u)dJ(K, u)

≤ J(K, ω) log ε + J(K, S n−1\ω) log R.
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Let ε → 0+, hence J(K, ω) log ε → −∞, This is a contradiction to the boundedness of the mixed
entropy E0(Ki, Li).

Now we prove that the sequence {Li}
∞
i=1 is bounded. We let Ri(ui) = max{ρLi(u) : u ∈ S n−1} for some

ui ∈ S n−1. Since the sequence {Li}
∞
i=1 contains a small ball, there is a constant r > 0 such that rBn

2 ⊂ Li

for all i ≥ 1, let Qi be the convex hull of point Ri(ui)ui and rBn
2|u
⊥
i , i.e.,

Qi = conv{Ri(ui)ui, rBn
2|u
⊥
i }.

Obviously, Qi ⊂ Li, together with the monotonicity of volume and (1.3),

|Li| ≥ |Qi| =
1
n

Ri(ui)Vn−1(rBn
2|u
⊥
i ).

By the Blaschke-Stantaló inequality, i.e., for Li ∈ K
n
e ,

|Li||L∗i | ≤ ω
2
n.

Combined with |L∗i | ≥ α, this implies that

Ri(ui) =
n

Vn−1(rBn
2|u
⊥
i )
|Qi| ≤

n
Vn−1(rBn

2|u
⊥
i )
|Li| ≤

nω2
n

αrn−1ωn−1
, (3.1)

for all i. Thus the sequence {Li}
∞
i=1 is bounded. There are two constants r,R > 0 such that rBn

2 ⊂ Li ⊂

RBn
2 for all i, together with (2.10), we know that J(Ki, S n−1) = κn, then for all i,

−κn log R ≤ E0(Ki, Li) = −

∫
S n−1

log ρLidJ(Ki, u) ≤ −κn log r.

This shows that the sequence {E0(Ki, Li)}∞i=1 is bounded. �

Remark 1. According to the above proof of Proposition 3.2, if {Li}
∞
i=1 ⊂ K

n
e and some α > 0 such that

rBn
2 ⊂ Li and |L∗i | ≥ α, then we can remove the condition that K ∈ Kn

0 is a regular convex body, we also
obtain the results that {E0(Ki, Li)}∞i=1 is bounded and {Li}

∞
i=1 is uniformly bounded.

4. The geominimal integral curvature

Throughout this section, we suppose that K ∈ Kn
0 , we mainly prove the existence and uniqueness of

the Entropy-Petty body. For further discussion, we introduce the continuity of the geominimal integral
curvature GE(K). We first define the geominimal integral curvature GE(K) as follows:

Definition 4.1. Suppose K ∈ Kn
0 is a convex body, the geominimal integral curvature of K is defined

by

GE(K) = sup
L∈ Kn

e

{ ∫
S n−1

log ρ(vrad(L∗)L, u)dJ(K, u)
}

= sup
{ ∫

S n−1
log ρ(L, u)dJ(K, u) : L ∈ Kn

e with |L∗| = ωn

}
.
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Remark 2. We show that the above definition is well defined. In fact, since |L∗| = ωn and L ∈ Kn
e , by

the Blaschke-Stantaló inequality, we have |L| ≤ ωn. Hence, by (2.1) and the Jensen inequality

ωn ≥
1
n

∫
S n−1

ρn
L(u)du ≥

κn

n

( 1
κn

∫
S n−1

ρL(u)du
)n
.

Hence
∫

S n−1 ρL(u)du is uniformly bounded. In the next, we assume K ∈ Kn
0 is a regular convex body,

by the concavity of Logarithmic function, we obtain that∫
S n−1

log ρ(L, u)dJ(K, u) ≤ κn log
( 1
κn

∫
S n−1

ρ(L, u)dJ(K, u)
)

= κn log
( 1
κn

∫
S n−1

ρ(L, u)du
)
< ∞.

For any K ∈ Kn
0 , we choose a regular convex body sequence Ki such that Ki → K as i→ ∞, combined

with Proposition 3.1, this implies that∫
S n−1

log ρ(L, u)dJ(K, u) < ∞.

Hence Definition 4.1 is well defined.
In the next, we prove our mainly result Theorem 1.1.

proof of Theorem 1.1. Firstly, we prove the existence. By Definition 4.1, there is a sequence {Mi}
∞
i=1 ⊂

Kn
e with |M∗

i | = ωn such that

0 =

∫
S n−1

log ρBn
2
(u)dJ(K, u) ≤

∫
S n−1

log ρMi(u)dJ(K, u) < ∞, for all i ≥ 1.

Let K ∈ Kn
0 be a regular convex body, we have

0 ≤
∫

S n−1
log ρMi(u)dJ(K, u) =

∫
S n−1

log ρMi(u)du < ∞.

By formula (2.4), we get

−∞ <

∫
S n−1

log hM∗i (u)du ≤ 0.

Let Ri(ui) = max{ρM∗i (u) : u ∈ S n−1}, and since Mi ∈ K
n
e , we have [−Ri(ui)ui,Ri(ui)ui] ⊂ M∗

i . Hence
h(M∗

i , u) ≥ Ri(ui)|u · ui| for all u ∈ S n−1. Therefore

κn log Ri(ui) +

∫
S n−1

log |u · ui|du ≤
∫

S n−1
log hM∗i (u)du ≤ 0.

Now, assume K ∈ Kn
0 is not a regular convex body, we can choose a regular convex body sequence Ki

such that Ki → K as i→ ∞, combined with Proposition 3.1, this implies that

κn log Ri(ui) +

∫
S n−1

log |u · ui|du ≤
∫

S n−1
log hM∗i (u)dJ(K, u) ≤ 0.

Since the integral on the left is independent of ui, this implies that Ri(ui) is uniformly bounded. Hence,
there exists r > 0 such that rBn

2 ⊂ Mi for all i ≥ 1. By Proposition 3.2, the sequence {Mi}
∞
i=1 is bounded.

By the Blaschke selection theorem, there is a subsequence, for convenience, it is still recorded it as
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{Mi}
∞
i=1, which converges to a compact convex set M. Since |M∗

i | = ωn, by Lemma 2.5, we have
M ∈ Kn

0 . Therefore Mi ∈ K
n
e , gives M ∈ Kn

e . By Proposition 3.1, we obtain that

GE(K) = lim
i→∞

∫
S n−1

log ρMi(u)dJ(K, u) =

∫
S n−1

log ρM(u)dJ(K, u) with |M∗| = ωn.

Next, we prove the uniqueness of theorem in the plane R2. Assume that there are two convex bodies
M1,M2 ∈ K

2
e with |M∗

1 | = |M
∗
2 | = π such that

GE(K) =

∫
S n−1

log ρM1(u)dJ(K, u) =

∫
S n−1

log ρM2(u)dJ(K, u).

Now we define a new set M ⊂ Rn about M1,M2 and together with (2.7), we have

M =
1
2
� M1+̂0

1
2
� M2 = (

1
2
· M∗

1+0
1
2
· M∗

2)∗.

Combining (2.3) and (2.8), we obtain M = 〈ρ1/2
M1
ρ1/2

M2
〉, this together with M1,M2 ∈ K

2
e implies that the

function ρ(u) = ρ1/2
M1

(u)ρ1/2
M2

(u) is even function on S n−1. Hence M ∈ K2
e and

ρ(M, u) ≥ ρ(M1, u)
1
2ρ(M2, u)

1
2 , for all u ∈ S n−1. (4.1)

Furthermore, by the log Brunn-Minkowski inequality in the plane (see [2]),

|M∗| = |
1
2
· M∗

1+0
1
2
· M∗

2 | ≥

√
|M∗

1 | · |M
∗
2 | = π,

with equality if and only if M∗
1 and M∗

2 are dilates or they are parallelograms with parallel sides. If M∗
1

and M∗
2 are dilates, we let M∗

1 = sM∗
2 for real number s > 0 and together with |M∗

1 | = s2|M∗
2 |, we have

s = 1, thus we see M1 = M2, which can be checked that vrad(M∗) ≥ 1, with equality if and only if
M1 = M2 or their polar bodies are parallelograms with parallel sides. By (4.1) and Definition 4.1, we
have

GE(K) ≥
∫

S 1
log ρ(vrad(M∗)M, u)dJ(K, u)

≥

∫
S 1

log ρ(M, u)dJ(K, u)

≥

∫
S 1

log[ρ
1
2 (M1, u)ρ

1
2 (M2, u)]dJ(K, u)

=

∫
S 1

1
2

[log ρM1(u) + log ρM2(u)]dJ(K, u)

= GE(K).

Hence, this forces vrad(M∗) = 1 and then M1 = M2 or their polar bodies are parallelograms with
parallel sides.

We will prove the continuity of GE(K) as follows:

Theorem 4.1. Let {Ki}
∞
i=1 ⊂ K

n
0 and K ∈ Kn

0 be such that Ki → K as i → ∞ in the Hausdorff metric,
then limi→∞GE(Ki) = GE(K).
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Proof. Let {Ki}
∞
i=1 ⊂ K

n
0 be such that Ki → K ∈ Kn

0 as i → ∞. For any fixed small ε > 0, by
Definition 4.1 and Proposition 3.1, there is a convex body Mε with |M∗

ε | = ωn, we have

GE(K) − ε ≤ −E0(K,Mε) = − lim
i→∞
E0(Ki,Mε) = − lim inf

i→∞
E0(Ki,Mε) ≤ lim inf

i→∞
GE(Ki).

Since ε > 0 is arbitrary small, one has

GE(K) ≤ lim inf
i→∞

GE(Ki). (4.2)

We now assume that Mi ∈ K
n
e with |M∗

i | = ωn such that GE(Ki) = −E0(Ki,Mi),

0 =

∫
S n−1

log ρBn
2
(u)dJ(Ki, u) ≤

∫
S n−1

log ρMi(u)dJ(Ki, u) < ∞, for all i ≥ 1.

Since both the sequence E0(Ki,Mi) and {Mi}
∞
i=1 are bounded, the Blaschke selection theorem now yields

that a subsequence {Mi j}
∞
j=1 of {Mi}

∞
i=1 converges to some compact convex set M′. But |M∗

i j
| = ωn, by

LemmaS 2.4, 2.5, and Mi ∈ K
n
e , the set M′ ∈ Kn

e is an origin-symmetric convex body and |(M′)∗| = ωn.
Together with the Definition 4.1, Proposition 3.1 and Theorem 1.1, we obtain

GE(K) ≥ −E0(K,M′) = − lim
i→∞
E0(Ki,Mi) = lim

i→∞
GE(Ki) = lim sup

i→∞
GE(Ki). (4.3)

Combining (4.2) and (4.3), we complete the proof, i.e.,

lim
i→∞

GE(Ki) = GE(K).

�

In the following corollary, we show that if the convex body K is an origin-symmetric polytope, then
the optimal problem has an origin-symmetric polytope solution.

Corollary 4.1. Let K ∈ Kn
e be a polytope with vertices u1, u2, · · ·, um. If M ∈ Kn

e such that

GE(K) = −E0(K,M) with |M∗| = ωn,

then M is a polytope with vertices v1, v2, · · ·, vm. Moreover, vi = λiui for λi > 0, i ∈ {1, 2, · · ·,m}.

Proof. Let K ∈ Kn
e be a polytope with vertK = {u1, u2, · · ·, um} (m = 2N ≥ n + 1). Obviously,

{
u1
|u1 |
, · · ·, um

|um |
} ⊂ S n−1 are not concentrated in any closed hemisphere of S n−1. Then the integral curvature

measure J(K, ·) about convex body K is the discrete measure concentrated on { u1
|u1 |
, · · ·, um

|um |
} ⊂ S n−1. Let

P be a polytope

P = conv{ρ(M, ū1)ū1, ρ(M, ū2)ū2, · · ·, ρ(M, ūm)ūm}. (4.4)

where ūi = ui
|ui |
∈ S n−1 for i = 1, ...m. Let uP,i = ρ(M, ūi)ūi ∈ ∂P be vertices of polytope P, then these are

λi > 0 such that uP,i = λiui for i ∈ {1, 2, · · ·,m}.
In the next, we only need prove P = M. By (4.4), we have ρ(P, ūi) = ρ(M, ūi) (1 ≤ i ≤ m) and

P ⊂ M. Thus
vrad(P∗) ≥ vrad(M∗) = 1.
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We obtain

GE(K) = sup
L∈Kn

e

{ ∫
S n−1

log[vrad(L∗)ρ(L, u)]dJ(K, u)
}

≥

∫
S n−1

log[vrad(P∗)ρ(P, u)]dJ(K, u)

≥

∫
S n−1

log ρ(P, u)dJ(K, u)

=

m∑
i=1

log ρ(P, ūi) · J(K, {ūi})

=

m∑
i=1

log ρ(M, ūi) · J(K, {ūi})

=

∫
S n−1

log ρ(M, u)dJ(K, u)

= sup
L∈Kn

e

{ ∫
S n−1

log[vrad(L∗)ρ(L, u)]dJ(K, u)
}

= GE(K).

This shows that vrad(P∗) = vrad(M∗) = 1. Hence we know that |M| = |P|. Thus P = M. �

5. Conclusions

In this paper, the geominimal integral curvature on the convex body is introduced. The existence and
uniqueness of the geominimal integral curvature are proved. Some other properties for the geominimal
integral curvature , such as continuity, are investigated.
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