Recently different definitions of fractional derivatives are proposed for the development of real-world systems and mathematical models. In this paper, our main concern is to develop and analyze the effective numerical method for fractional order HIV/ AIDS model which is advanced approach for such biological models. With the help of an effective techniques and Sumudu transform, some new results are developed. Fractional order HIV/AIDS model is analyzed. Analysis for proposed model is new which will be helpful to understand the outbreak of HIV/AIDS in a community and will be helpful for future analysis to overcome the effect of HIV/AIDS. Novel numerical procedures are used for graphical results and their discussion.
Citation: Muhammad Mannan Akram, Muhammad Farman, Ali Akgül, Muhammad Umer Saleem, Aqeel Ahmad, Mohammad Partohaghigh, Fahd Jarad. Analysis of HIV/AIDS model with Mittag-Leffler kernel[J]. AIMS Mathematics, 2022, 7(7): 13383-13401. doi: 10.3934/math.2022739
Recently different definitions of fractional derivatives are proposed for the development of real-world systems and mathematical models. In this paper, our main concern is to develop and analyze the effective numerical method for fractional order HIV/ AIDS model which is advanced approach for such biological models. With the help of an effective techniques and Sumudu transform, some new results are developed. Fractional order HIV/AIDS model is analyzed. Analysis for proposed model is new which will be helpful to understand the outbreak of HIV/AIDS in a community and will be helpful for future analysis to overcome the effect of HIV/AIDS. Novel numerical procedures are used for graphical results and their discussion.
[1] | C. S. Chou, A. Friedman, Introduction, In: Introduction to mathematical biology, Springer, 2016. https://doi.org/10.1007/978-3-319-29638-8_1 |
[2] | F. M. Barre-Sinoussi, J. C. Chermann, R. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science, 220 (1983), 868–871. https://doi.org/10.1126/science.6189183 doi: 10.1126/science.6189183 |
[3] | U. L. Abbas, R. M. Anderson, J. W. Mellors, Potential impact of antiretroviral chemoprophylaxis on HIV-1 transmission in resource-limited settings, PLoS ONE, 2 (2007), e875. https://doi.org/10.1371/journal.pone.0000875 doi: 10.1371/journal.pone.0000875 |
[4] | Z. Sadegh, N. A. Miehran, A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4+ T-cells, Iran. J. Math. Chem., 6 (2015), 169–184. |
[5] | J. S. Cristiana, F. M. Delfim, Global stability for a HIV/AIDS modlers, Commun. Fac. Sci. Univ. Ank. Ser., 67 (2018), 93–101. |
[6] | R. E. Mickens, Advances in the applications of nonstandard finite difference schemes, Singapore: Wiley-Interscience, 2005. https://doi.org/10.1142/5884 |
[7] | R. E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Meth. Part. Differ. Eq., 23 (2007), 672–691. https://doi.org/10.1002/num.20198 doi: 10.1002/num.20198 |
[8] | Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4+ T-cells, Math. Comput. Model, 50 (2009), 386–392. https://doi.org/10.1016/j.mcm.2009.04.019 doi: 10.1016/j.mcm.2009.04.019 |
[9] | A. Gökdoǧan, A. Yildirim, M. Merdan, Solving a fractional order model of HIV infection of CD4+ T cells, Math. Comput. Model, 54 (2011), 2132–2138. https://doi.org/10.1016/j.mcm.2011.05.022 doi: 10.1016/j.mcm.2011.05.022 |
[10] | M. M. Khader, The modeling dynamics of HIV and CD4+ T-cells during primary infection in fractional order: Numerical simulation, Mediterr. J. Math., 15 (2018), 139. https://doi.org/10.1007/s00009-018-1178-9 doi: 10.1007/s00009-018-1178-9 |
[11] | A. Agila, D. Baleanu, R. Eid, B. Irfanoglu, Applications of the extended fractional Euler-Lagrange equations model to freely oscillating dynamical systems, Rom. J. Phys., 61 (2016), 350–359. |
[12] | P. K. Gupta, Local and global stability of fractional order HIV/AIDS dynamics model, In: D. Ghosh, D. Giri, R. Mohapatra, E. Savas, K. Sakurai, L. Singh, Mathematics and computing, International Conference on Mathematics and Computing, Communications in Computer and Information Science, 834 (2018) 141–148. https://doi.org/10.1007/978-981-13-0023-3_14 |
[13] | N. Özalp, E. Demirci, A fractional order SEIR model with vertical transmission, Math. Comput. Model, 54 (2011), 1–6. https://doi.org/10.1016/j.mcm.2010.12.051 doi: 10.1016/j.mcm.2010.12.051 |
[14] | M. Javidi, N. Nyamoradi, Numerical behavior of a fractional order HIV/AIDS epidemic model, World J. Model Simul., 9 (2013), 139–149. |
[15] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[16] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92. http://dx.doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202 |
[17] | A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439–4453. https://doi.org/10.3390/e17064439 doi: 10.3390/e17064439 |
[18] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, arXiv, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
[19] | M. Farman, M. U. Saleem, M. F Tabassum, A. Ahmad, M. O. Ahmad, A linear control of composite model for glucose insulin glucagon pump, Ain Shamas Eng. J., 10 (2019), 867–872. https://doi.org/10.1016/j.asej.2019.04.001 doi: 10.1016/j.asej.2019.04.001 |
[20] | M. Farman, M. U. Saleem, A. Ahmad, S. Imtiaz, M. F. Tabassm, S. Akram, et al., A control of glucose level in insulin therapies for the development of artificial pancreas by Atangana Baleanu derivative, Alex. Eng. J., 59 (2020), 2639–2648. https://doi.org/10.1016/j.aej.2020.04.027 doi: 10.1016/j.aej.2020.04.027 |
[21] | M. Farman, A. Akgül, D. Baleanu, S. Imtiaz, A. Ahmad, Analysis of fractional order chaotic financial model with minimum interest rate impact, Fractal Fract., 4 (2020), 43. https://doi.org/10.3390/fractalfract4030043 doi: 10.3390/fractalfract4030043 |
[22] | M. U. Saleem, M. Farman, A. Ahmad, H. Ehsan, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulin therapies for diabetes, Ain Shamas Eng. J., 11 (2020), 1309–1316. https://doi.org/10.1016/j.asej.2020.03.006 doi: 10.1016/j.asej.2020.03.006 |
[23] | A. Hussain, S. Yaqoob, On a nonlinear fractional-order model of novel coronavirus (NCOV-2019) under AB-fractional derivative, Authorea, 2020. https://doi.org/10.22541/au.158739577.76215854 doi: 10.22541/au.158739577.76215854 |
[24] | M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng J., 2020. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033 |
[25] | M. Amin, M. Farman, A. Akgül, R. T. Alqahtani, Effect of vaccination to control COVID-19 with Fractal-Fractional operator, Alex. Eng. J., 61 (2022), 3551–3557. https://doi.org/10.1016/j.aej.2021.09.006 doi: 10.1016/j.aej.2021.09.006 |
[26] | H. F. Huo, R. Chen, X. Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model, 40 (2016), 6550–6559. https://doi.org/10.1016/j.apm.2016.01.054 doi: 10.1016/j.apm.2016.01.054 |
[27] | E. J. Moore, S. Sirisubtawee, S. Koonprasert, A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ., 2019 (2019), 200. https://doi.org/10.1186/s13662-019-2138-9 doi: 10.1186/s13662-019-2138-9 |
[28] | A. Atangana, E. Bonyah, A. A. Elsadany, A fractional order optimal 4D chaotic financial model with Mittag-Leffler law, Chin. J. Phys., 65 (2020), 38–53, https://doi.org/10.1016/j.cjph.2020.02.003 doi: 10.1016/j.cjph.2020.02.003 |
[29] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0 |
[30] | M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020 |
[31] | M. Al-Smadi, O. A. Arqub, S. Momani, Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense, Phys. Scr., 95 (2020), 075218. doi: 10.1088/1402-4896/ab96e0 |
[32] | M. Al-Smadi, O. A. Arqub, S. Hadid, An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative, Commun. Theor. Phys., 72 (2020), 085001. doi: 10.1088/1572-9494/ab8a29 |
[33] | M. Al-Smadi, O. A. Arqub, S. Hadid, Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method, Phys. Scr., 95 (2020) 105205. doi: 10.1088/1402-4896/abb420 |
[34] | S. Momani, A. Freihat, M. Al-Smadi, Analytical study of fractional-order multiple chaotic Fitzhugh-Nagumo neurons model using multistep generalized differential transform method, Abstr. Appl. Anal., 2014 (2014), 276279. https://doi.org/10.1155/2014/276279 doi: 10.1155/2014/276279 |
[35] | H. Habenom, M. Aychluh, D. L. Suthar, Q. Al-Mdallal, S. D. Purohit, Modeling and analysis on the transmission of COVID-19 Pandemic in Ethiopia, Alex. Eng. J., 61 (2022), 5323–5342. https://doi.org/10.1016/j.aej.2021.10.054 doi: 10.1016/j.aej.2021.10.054 |
[36] | M. Asif, Z. A. Khan, N. Haider, Q. Al-Mdallal, Numerical simulation for solution of SEIR models by meshless and finite difference methods, Chaos Soliton. Fract., 141 (2020), 110340. https://doi.org/10.1016/j.chaos.2020.110340 doi: 10.1016/j.chaos.2020.110340 |
[37] | K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K. J. Ansari, T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos Soliton. Fract., 157 (2022), 111955. https://doi.org/10.1016/j.chaos.2022.111955 doi: 10.1016/j.chaos.2022.111955 |