By investigating complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in anti-de Sitter space $ \mathbb{H}_{1}^{5}(-1) $, we give a new characterization of hyperbolic cylinder $ \mathbb{H}^{2}(-2)\times\mathbb{H}^{2}(-2) $ in $ \mathbb{H}_{1}^{5}(-1) $.
Citation: Xuerong Qi, Chunxia Shi. A new characterization of hyperbolic cylinder in anti-de Sitter space $ \mathbb{H}_1^{5}(-1) $[J]. AIMS Mathematics, 2022, 7(7): 12802-12814. doi: 10.3934/math.2022708
By investigating complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in anti-de Sitter space $ \mathbb{H}_{1}^{5}(-1) $, we give a new characterization of hyperbolic cylinder $ \mathbb{H}^{2}(-2)\times\mathbb{H}^{2}(-2) $ in $ \mathbb{H}_{1}^{5}(-1) $.
[1] | E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math., 15 (1970), 223–230. |
[2] | L. F. Cao, G. X. Wei, A new characterization of hyperbolic cylinder in anti-de Sitter space $\mathbb{H}^{n+1}_1(-1)$, J. Math. Anal. Appl., 329 (2007), 408–414. https://doi.org/10.1016/j.jmaa.2006.06.075 doi: 10.1016/j.jmaa.2006.06.075 |
[3] | R. M. B. Chaves, L. A. M. Sousa, B. C. Valério, New characterizations for hyperbolic cylinders in anti-de Sitter spaces, J. Math. Anal. Appl., 393 (2012), 166–176. https://doi.org/10.1016/j.jmaa.2012.03.043 doi: 10.1016/j.jmaa.2012.03.043 |
[4] | Q. M. Cheng, Complete maximal spacelike hypersurfaces of $\mathbb{H}^4_1(c)$, Manuscripta Math., 82 (1994), 149–160. |
[5] | Q. M. Cheng, Hypersurfaces of a Lorentz space form, Arch. Math., 63 (1994), 271–281. https://doi.org/10.1007/BF01189830 doi: 10.1007/BF01189830 |
[6] | Q. M. Cheng, S. Ishikawa, Spacelike hypersurfaces with constant scalar curvature, Manuscripta Math., 95 (1998), 499–505. https://doi.org/10.1007/BF02678045 doi: 10.1007/BF02678045 |
[7] | Q. M. Cheng, Y. J. Suh, Maximal space-like hypersurfaces in $\mathbb{H}^4_1(-1)$ with zero Gauss-Kronecker curvature, J. Korean Math. Soc., 43 (2006), 147–157. https://doi.org/10.4134/JKMS.2006.43.1.147 doi: 10.4134/JKMS.2006.43.1.147 |
[8] | S. Y. Cheng, S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104 (1976), 407–419. https://doi.org/10.2307/1970963 doi: 10.2307/1970963 |
[9] | Q. T. Deng, H. L. Gu, Q. Y. Wei, Closed Willmore minimal hypersurfaces with constant scalar curvature in $\mathbb{S}^{5}(1)$ are isoparametric, Adv. Math., 314 (2017), 278–305. https://doi.org/10.1016/j.aim.2017.05.002 doi: 10.1016/j.aim.2017.05.002 |
[10] | T. Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J., 35 (1988), 345–352. |
[11] | T. Lusala, M. Scherfner, L. A. M. Sousa, Closed minimal Willmore hypersurfaces of $\mathbb{S}^{5}(1)$ with constant scalar curvature, Asian J. Math., 9 (2005), 65–78. |
[12] | S. C. Shu, J. F. Chen, Willmore spacelike submanifolds in an indefinite space form $N_{q}^{n+p}(c)$, Publ. I. Math., 102 (2017), 175–193. https://doi.org/10.2298/PIM1716175S doi: 10.2298/PIM1716175S |
[13] | B. C. Yin, S. J. Zhai, Classification of Möbius minimal and Möbius isotropic hypersurfaces in $\mathbb{S}^{5}$, AIMS Mathematics, 6 (2021), 8426–8452. https://doi.org/10.3934/math.2021489 doi: 10.3934/math.2021489 |