Research article

Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix

  • Received: 28 December 2021 Revised: 21 March 2022 Accepted: 05 April 2022 Published: 15 April 2022
  • MSC : 47C05, 47C15, 15A09, 15B05

  • We study a class of column upper-minus-lower (CUML) Toeplitz matrices, which are "close" to the Toeplitz matrices in the sense that their ($ 1, -1 $)-cyclic displacements coincide with $ \varphi $-cyclic displacement of some Toeplitz matrices. Among others, we derive the inverse formula for CUML Toeplitz matrices in the form of sums of products of factor circulants by constructing the corresponding displacement of the matrices. In addition, by the relationship between CUML Toeplitz matrices and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also obtained.

    Citation: Yanpeng Zheng, Xiaoyu Jiang. Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix[J]. AIMS Mathematics, 2022, 7(7): 11647-11662. doi: 10.3934/math.2022649

    Related Papers:

  • We study a class of column upper-minus-lower (CUML) Toeplitz matrices, which are "close" to the Toeplitz matrices in the sense that their ($ 1, -1 $)-cyclic displacements coincide with $ \varphi $-cyclic displacement of some Toeplitz matrices. Among others, we derive the inverse formula for CUML Toeplitz matrices in the form of sums of products of factor circulants by constructing the corresponding displacement of the matrices. In addition, by the relationship between CUML Toeplitz matrices and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also obtained.



    加载中


    [1] L. Lakatos, L. Szeidl, M. Telek, Introduction to Queueing Systems with Telecommunication Applications, 2 Eds., Springer Publishing Company, Incorporated, 2019.
    [2] X. Y. Jiang, K. Hong, Z. W. Fu, Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix, J. Nonlinear Sci. Appl., 10 (2017), 4058–4070. http://dx.doi.org/10.22436/jnsa.010.08.02
    [3] A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, 2 Eds., Springer-Verlag Berlin Heidelberg, 2019.
    [4] Y. Q. Bai, T. Z. Huang, X. M. Gu, Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings, Appl. Math. Lett., 48 (2015), 14–22. http://dx.doi.org/10.1016/j.aml.2015.03.010 doi: 10.1016/j.aml.2015.03.010
    [5] M. K. Ng, J. Pan, Weighted Toeplitz regularized least squares computation for image restoration, SIAM J. Sci. Comput., 36 (2014), B94–B121. http://dx.doi.org/10.1137/120888776 doi: 10.1137/120888776
    [6] Z. Z. Bai, G. Q. Li, L. Z. Lu, Combinative preconditioners of modified incomplete Cholesky factorization and Sherman-Morrison-Woodbury update for self-adjoint elliptic Dirichlet-periodic boundary value problems, J. Comput. Math., 22 (2004), 833–856. http://dx.doi.org/doi:10.1016/j.cam.2004.02.011 doi: 10.1016/j.cam.2004.02.011
    [7] Z. Z. Bai, Z. R. Ren, Block-triangular preconditioning methods for linear third-order ordinary differential equations based on reduced-order sinc discretizations, J. Industr. Appl. Math., 30 (2013), 511–527. http://dx.doi.org/10.1007/s13160-013-0112-6 doi: 10.1007/s13160-013-0112-6
    [8] Z. Z. Bai, R. H. Chan, Z. R. Ren, On sinc discretization and banded preconditioning for linear third-order ordinary differential equations, Numer. Linear Algebra Appl., 18 (2011), 471–497. https://doi.org/10.1002/nla.738 doi: 10.1002/nla.738
    [9] Z. Z. Bai, R. H. Chan, Z. R. Ren, On order-reducible sinc discretizations and block-diagonal preconditioning methods for linear third-order ordinary differential equations, Numer. Linear Algebra Appl., 21 (2014), 108–135. http://dx.doi.org/10.1002/nla.1868 doi: 10.1002/nla.1868
    [10] M. Shi, F. özbudak, L. Xu, P. Solé, LCD codes from tridiagonal Toeplitz matrices, Finite Fields Appl., 75 (2021), 101892. https://linkinghub.elsevier.com/retrieve/pii/S1071579721000861
    [11] M. Shi, L. Xu, P. Solé, On isodual double Toeplitz codes, 2021. https://arXiv.org/pdf/2102.09233v1
    [12] C. F. Cao, S. Huang, The commutants of analytic Toeplitz operators for several complex variables, Sci. China Math., 53 (2010), 1877–1884. http://dx.doi.org/10.1007/s11425-010-4023-6 doi: 10.1007/s11425-010-4023-6
    [13] X. F. Wang, G. F. Cao, J. Xia, Toeplitz operators on Fock-Sobolev spaces with positive measure symbols, Sci. China Math., 57 (2014), 1443–1462. http://dx.doi.org/10.1007/s11425-014-4813-3 doi: 10.1007/s11425-014-4813-3
    [14] J. Y. Yang, Y. F. Lu, Commuting dual Toeplitz operators on the harmonic Bergman space, Sci. China Math., 58 (2015), 1461–1472. http://dx.doi.org/10.1007/s11425-014-4940-x doi: 10.1007/s11425-014-4940-x
    [15] X. F. Zhao, D. C. Zheng, The spectrum of Bergman Toeplitz operators with some harmonic symbols, Sci. China Math., 59 (2016), 731–740. https://doi.org/10.1007/s11425-015-5083-4 doi: 10.1007/s11425-015-5083-4
    [16] G. X. Ji, Analytic Toeplitz algebras and the Hilbert transform associated with a subdiagonal algebra, Sci. China Math., 57 (2014), 579–588. https://doi.org/10.1007/s11425-013-4684-z doi: 10.1007/s11425-013-4684-z
    [17] M. K. Ng, K. Rost, Y. W. Wen, On inversion of Toeplitz matrices, Linear Algebra Appl., 348 (2002), 145–151. https://doi.org/10.1016/S0024-3795(01)00592-4 doi: 10.1016/S0024-3795(01)00592-4
    [18] G. Labahn, T. Shalom, Inversion of Toeplitz structured matrices using only standard equations, Linear Algebra Appl., 207 (1994), 49–70. https://doi.org/10.1016/0024-3795(94)90004-3 doi: 10.1016/0024-3795(94)90004-3
    [19] G. Heinig, On the reconstruction of Toeplitz matrix inverses from columns, Linear Algebra Appl., 350 (2002), 199–212. https://doi.org/10.1016/S0024-3795(02)00289-6 doi: 10.1016/S0024-3795(02)00289-6
    [20] L. Lerer, M. Tismenetsky, Generalized Bezoutian and the inversion problem for block matrices, Integr. Equat. Oper. Th., 9 (1986), 790–819. https://doi.org/10.1007/BF01202517 doi: 10.1007/BF01202517
    [21] G. Ammar, P. Gader, A variant of the Gohberg-Semencul formula involving circulant matrices, SIAM J. Matrix Anal. Appl., 12 (1991), 534–540. https://doi.org/10.1137/0612038 doi: 10.1137/0612038
    [22] X. G. Lv, T. Z. Huang, A note on inversion of Toeplitz matrices, Appl. Math. Lett., 20 (2007), 1189–1193. https://doi.org/10.1016/j.aml.2006.10.008 doi: 10.1016/j.aml.2006.10.008
    [23] Z. L. Jiang, D. D.Wang, Explicit group inverse of an innovative patterned matrix, Appl. Math. Comput., 274 (2016), 220–228. http://dx.doi.org/10.1016/j.amc.2015.11.021 doi: 10.1016/j.amc.2015.11.021
    [24] Z. L. Jiang, J. X. Chen, The explicit inverse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices, J. Appl. Math. Comput., 53 (2017), 1–16. http://dx.doi.org/10.1007/s12190-015-0954-y doi: 10.1007/s12190-015-0954-y
    [25] Z. L. Jiang, T. Y. Tam, Y. F. Wang, Inversion of conjugate-Toeplitz matrices and conjugate-Hankel matrices. Linear and Multilinear Algebra, Linear Multilinear Algebra, 65 (2017), 256–268. http://dx.doi.org/10.1080/03081087.2016.1182465 doi: 10.1080/03081087.2016.1182465
    [26] T. Kailath, S. Kung, M. Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl., 68 (1979), 395–407. http://dx.doi.org/10.1016/0022-247X(79)90124-0 doi: 10.1016/0022-247X(79)90124-0
    [27] I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, J. Math. Anal. Appl., 68 (1992), 730–743. http://dx.doi.org/10.1007/bf01200697 doi: 10.1007/bf01200697
    [28] Z. L. Jiang, T. T. Xu, Norm estimates of $\omega$-circulant operator matrices and isomorphic operators for $\omega$-circulant algebra, Sci. China Math., 59 (2016), 351–366. http://dx.doi.org/10.1007/s11425-015-5051-z doi: 10.1007/s11425-015-5051-z
    [29] Z. L. Jiang, Y. C. Qiao, S. D. Wang, Norm equalities and inequalities for three circulant operator matrices, Acta Math. Appl. Sin. Engl. Ser., 33 (2017), 571–590. https://doi.org/10.1007/s10114-016-5607-z doi: 10.1007/s10114-016-5607-z
    [30] G. Ammar, P. Gader, New decompositions of the inverse of a Toeplitz matrices, signal processing, scattering and operator theory and numerial methods, Int. Symp. MTNS-89, Birkhauser, Boston, 3 (1990), 421–428. http://dx.doi.org/10.5430/cns.v1n2p80 doi: 10.5430/cns.v1n2p80
    [31] P. Gader, Displacement operator based decompositions of matrices using circulants or other group matrices, Linear Algebra Appl., 139 (1990), 111–131. https://doi.org/10.1016/0024-3795(90)90392-P doi: 10.1016/0024-3795(90)90392-P
    [32] N. Shen, Z. L. Jiang, J. Li, On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers, WSEAS Trans. Math., 12 (2013), 42–53. http://dx.doi.org/10.1016/0044-370392-Z doi: 10.1016/0044-370392-Z
    [33] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge university press, 1990.
    [34] X. Y. Jiang, K. Hong, Explicit determinants of the $k$-Fibonacci and $k$-Lucas RSFPLR circulant matrix in codes, Comm. Comput. Inf. Sci., 391 (2013), 625–637. http://dx.doi.org/10.1007/978-3-642-53932-9-61
    [35] X. Y. Jiang, K. Hong, Exact determinants of some special circulant matrices involving four kinds of famous numbers, 2014 (2014), 1–12. http://dx.doi.org/10.1155/2014/273680
    [36] X. Y. Jiang, K. Hong, Algorithms for finding inverse of two patterned matrices over $\mathbb{Z}_p$, Abstr. Appl. Anal., 2014 (2014), 1–6. http://dx.doi.org/10.1155/2014/840435 doi: 10.1155/2014/840435
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1526) PDF downloads(83) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog