Research article

On a proximal point algorithm for solving common fixed point problems and convex minimization problems in Geodesic spaces with positive curvature

  • Received: 06 September 2021 Revised: 20 February 2022 Accepted: 06 March 2022 Published: 14 March 2022
  • MSC : 47H09, 47H10, 47J05, 52A41

  • In this article, we present a new modified proximal point algorithm in the framework of CAT(1) spaces which is utilized for solving common fixed point problem and minimization problems. Also, we prove convergence results of the obtained process under some mild conditions. Our results extend and improve several corresponding results of the existing literature.

    Citation: Chainarong Khunpanuk, Chanchal Garodia, Izhar Uddin, Nuttapol Pakkaranang. On a proximal point algorithm for solving common fixed point problems and convex minimization problems in Geodesic spaces with positive curvature[J]. AIMS Mathematics, 2022, 7(5): 9509-9523. doi: 10.3934/math.2022529

    Related Papers:

  • In this article, we present a new modified proximal point algorithm in the framework of CAT(1) spaces which is utilized for solving common fixed point problem and minimization problems. Also, we prove convergence results of the obtained process under some mild conditions. Our results extend and improve several corresponding results of the existing literature.



    加载中


    [1] W. A. Kirk, Geodesic geometry and fixed point theory, In : Seminar of mathematical analysis (Malaga/Seville, 2002/2003), Sevilla: Universidad de Sevilla, 64 (2003), 195–225.
    [2] W. A. Kirk, Geodesic geometry and fixed point theory II, In: Proceedings of the international conference on fixed point theory and applications, 2003,113–142.
    [3] R. Espínola, A. Fernández-León, CAT($\kappa$) spaces, weak convergence and fixed points, J. Math. Anal. Appl., 353 (2009), 410–427. https://doi.org/10.1016/j.jmaa.2008.12.015 doi: 10.1016/j.jmaa.2008.12.015
    [4] J. S. He, D. H. Fang, G. Lopez, C. Li, Mann's algorithm for nonexpansive mappings in CAT(κ) spaces, Nonlinear Anal.-Theor., 75 (2012), 445–452. https://doi.org/10.1016/j.na.2011.07.070 doi: 10.1016/j.na.2011.07.070
    [5] Y. Kimura, S. Saejung, P. Yotkaew, The Mann algorithm in a complete geodesic space with curvature bounded above, Fixed Point Theory Appl., 2013 (2013), 336. https://doi.org/10.1186/1687-1812-2013-336 doi: 10.1186/1687-1812-2013-336
    [6] C. Y. Jun, Ishikawa iteration process on CAT ($\kappa$) spaces, 2013. arXiv: 1303.6669.
    [7] B. Panyanak, On total asymptotically nonexpansive mappings in CAT($\kappa$) spaces, J. Inequal. Appl., 2014 (2014), 336. https://doi.org/10.1186/1029-242X-2014-336 doi: 10.1186/1029-242X-2014-336
    [8] R. Suparatulatorn, P. Cholamjiak, The modified S-iteration process for nonexpansive mappings in CAT($\kappa$) spaces, Fixed Point Theory Appl., 2016 (2016), 25. https://doi.org/10.1186/s13663-016-0515-6 doi: 10.1186/s13663-016-0515-6
    [9] P. Saipara, P. Chaipunya, Y. J. Cho, P. Kumam, On strong and $\Delta$-convergence of modified S-iteration f or uniformly continuous total asymptotically nonexpansive mappings in CAT($\kappa$) spaces, J. Nonlinear Sci. Appl., 8 (2015), 965–975. http://doi.org/10.22436/jnsa.008.06.07 doi: 10.22436/jnsa.008.06.07
    [10] P. Thounthong, N. Pakkaranang, P. Saipara, P. Phairatchatniyom, P. Kumam, Convergence analysis of modified iterative approaches in geodesic spaces with curvature bounded above, Math. Method. Appl. Sci., 42 (2019), 5929–5943. https://doi.org/10.1002/mma.5924 doi: 10.1002/mma.5924
    [11] T. Bantaojai, C. Garodia, I. Uddin, N. Pakkaranang, P. Yimmuang, A novel iterative approach for solving common fixed point problems in Geodesic spaces with convergence analysis, Carpathian J. Math., 37 (2021), 145–160. https://doi.org/10.37193/CJM.2021.02.01 doi: 10.37193/CJM.2021.02.01
    [12] M. Bačák, The proximal point algorithm in metric spaces, Isr. J. Math., 194 (2013), 689–701. https://doi.org/10.1007/s11856-012-0091-3 doi: 10.1007/s11856-012-0091-3
    [13] P. Cholamjiak, The modified proximal point algorithm in CAT($0$) spaces, Optim. Lett., 9 (2015), 1401–1410. https://doi.org/10.1007/s11590-014-0841-8 doi: 10.1007/s11590-014-0841-8
    [14] R. Suparatulatorn, P. Cholamjiak, S. Suantai, On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT($0$) spaces, Optim. Method. Softw., 32 (2017), 182–192. https://doi.org/10.1080/10556788.2016.1219908 doi: 10.1080/10556788.2016.1219908
    [15] R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [16] W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022 doi: 10.1016/j.cam.2010.12.022
    [17] S. S. Chang, J. C. Yao, L. Wang, L. J. Qin, Some convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT($0$) spaces, Fixed Point Theory Appl., 2016 (2016), 68. https://doi.org/10.1186/s13663-016-0559-7 doi: 10.1186/s13663-016-0559-7
    [18] N. Pakkaranang, P. Kumam, Y. J. Cho, Proximal point algorithms for solving convex minimization problem and common fixed points problem of asymptotically quasi-nonexpansive mappings in $\rm CAT(0)$ spaces with convergence analysis, Numer. Algor., 78 (2018), 827–845. https://doi.org/10.1007/s11075-017-0402-1 doi: 10.1007/s11075-017-0402-1
    [19] P. Chaipunya, P. Kumam, On the proximal point method in Hadamard spaces, Optimization, 66 (2017), 1647–1665. https://doi.org/10.1080/02331934.2017.1349124 doi: 10.1080/02331934.2017.1349124
    [20] Y. Kimura, F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear Nonlinear Anal., 3 (2017), 133–148.
    [21] Y. P. Lv, K. Shabbir, S. Shahzeen, F. Ali, J. Kafle, Extragradient method for fixed points in CAT(0) spaces, J. Funct. Spaces, 2021 (2021), 7808255. https://doi.org/10.1155/2021/7808255 doi: 10.1155/2021/7808255
    [22] O. P. Ferreira, P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization, 51 (2002), 257–270. https://doi.org/10.1080/02331930290019413 doi: 10.1080/02331930290019413
    [23] C. Li, G. López, V. Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc., 79 (2009), 663–683. https://doi.org/10.1112/jlms/jdn087 doi: 10.1112/jlms/jdn087
    [24] E. A. P. Quiroz, P. R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds, J. Convex Anal., 16 (2009), 49–69.
    [25] J. H. Wang, G. López, Modified proximal point algorithms on Hadamard manifolds, Optimization, 60 (2011), 697–708. https://doi.org/10.1080/02331934.2010.505962 doi: 10.1080/02331934.2010.505962
    [26] R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens, M. Shub, Newton's method on Riemannian manifolds and a geometric model for human spine, IMA J. Numer. Anal., 22 (2002), 359–390. https://doi.org/10.1093/imanum/22.3.359 doi: 10.1093/imanum/22.3.359
    [27] S. T. Smith, Optimization techniques on Riemannian manifolds, In: Hamiltonian and gradient flows, algorithms and control (Fields institute communications), Providence, RI: American Mathematical Society, 3 (1994), 113–136. http://doi.org/10.1090/fic/003
    [28] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-015-8390-9
    [29] J. H. Wang, C. Li, Convergence of the family of Euler-Halley type methods on Riemannian manifolds under the $\gamma$-condition, Taiwanese J. Math., 13 (2009), 585–606. https://doi.org/10.11650/twjm/1500405357 doi: 10.11650/twjm/1500405357
    [30] Y. Kimura, F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl., 18 (2016), 93–115. https://doi.org/10.1007/s11784-015-0267-7 doi: 10.1007/s11784-015-0267-7
    [31] N. Pakkaranang, P. Kumam, P. Cholamjiak, R. Suparatulatorn, P. Chaipunya, Proximal point algorithms involving fixed point iteration for nonexpansive mappings in CAT(κ) spaces, Carpathian J. Math., 34 (2018), 229–237.
    [32] N. Pakkaranang, P. Kumam, C. F. Wen, J. C. Yao, Y. J. Cho, On modified proximal point algorithms for solving minimization problems and fixed point problems in CAT($\kappa$) spaces, Math. Method. Appl. Sci., 44 (2019), 12369–12382. https://doi.org/10.1002/mma.5965 doi: 10.1002/mma.5965
    [33] N. Wairojjana, P. Saipara, On solving minimization problem and common fixed point problem over geodesic spaces with curvature bounded above, Commun. Math. Appl., 11 (2020), 443–460.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1200) PDF downloads(46) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog