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1. Introduction

Suppose (X̃, d̃) is a geodesic metric space and Ω ⊂ X̃. Let F̃(θ) be the collection of fixed points
of nonlinear mappings θ : Ω → Ω. It is a common knowledge that F̃(θ) := {α ∈ Ω|θα = α}. The
mapping θ is said to be nonexpansive if for all α, α ∈ Ω, ‖θα − θα‖ ≤ ‖α − α‖ holds. For a real
number κ, a CAT(κ) space (named in honour of E. Cartan, A. D. Alexanderov and V. A. Toponogov) is
referred to a geodesic space such that its geodesic triangle is adequately thinner than the corresponding
comparison triangle in a model space with curvature κ. The CAT(κ) has been of great interest to
famous mathematicians and a number of contributions have been presented. For instance, by taking
κ ≤ 0, Kirk [1, 2] established the existence of fixed points for a nonexpansive mapping in CAT(κ). On
the other hand, Espı́nola and Fernández-León [3] showed that if the space CAT(κ) has at least one fixed
point, then it is possible to approximate it by using some suitable iterative techniques.

Optimization problem is considered a crucial problems due its appearance in many areas of
applied sciences and engineering. As many optimization problems are nonlinear in nature, solving
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them analytically could be a cumbersome task or even impossible. Therefore, developing suitable
iterative techniques for handling such problems becomes imperative. In this regards, many
researchers have studied some famous iterative schemes in CAT(κ). For example, He et al. [4]
extended the well-known Mann iterative scheme into CAT(κ) as follows: Given α1 ∈ X̃, the
subsequent iterates can be calculated using

αz+1 = χzαz ⊕ (1 − χz)θαz, z ≥ 1. (1.1)

By taking 0 ≤ χz ≤ 1 for all z, they established M-convergence for the iterative scheme (1.1) in CAT(κ)
where θ is a nonexpasive mapping. To improve the work of He et al. [4], two M-convergence results
for the iterative scheme (1.1) in CAT(κ) was proved by Kimura et al. [5] for common fixed point of a
countable family of nonexpansive mappings where the curvature is bounded above by a number greater
than zero. Furthermore, Jun [6] extended the Ishikawa iterative scheme into CAT(κ) spaces as follows:
Let {χz} and {ρz} be some sequences in [0, 1] and α1 ∈ X̃ then, the sequence {αz} can be calculated viaβz = ρzαz ⊕ (1 − ρz)θ1αz

αz+1 = χzθ2βz ⊕ (1 − χz)θ1αz,
z ≥ 1. (1.2)

He proved that the sequence of iterates generated by (1.2) M-converges to some fixed point of some
nonexpansive mapping in CAT(κ) spaces where κ > 0. For more details on some famous iterative
schemes have been extended into the CAT(1) space, the reader may refer to [4,7–11] and the references
therein.

Proximal point algorithms have gained tremendous attentions in recent time due to numerous
applications. In 2013, Bačák [12], extended the proximal point algorithm in Hadamard space. The
settings of his proximal algorithm is as follows: given α1 ∈ X̃ and λ̃z > 0, for all z > 0, for which its
series diverges, then the subsequent iterates are generated using

αz+1 = arg min
β∈X̃

[
g̃(β) +

1
2λ̃z

d̃2(β, αz)
]
. (1.3)

By assuming that the function g̃ : X̃ → (−∞,∞] is convex, lower semi-continuous and bounded
below, the sequence {αz} M −converges to its minimizer was proved. Following the successive of the
work in [12], Cholamjiak [13] incorporated the proximal point algorithm into the famous Halpern
iterative scheme in the settings of CAT(0) spaces and established strong convergence based on
standard assumptions. Subsequently, Suparatulatorn and Cholamjiak [14] presented a modified
proximal point algorithms in the framework of CAT(0) spaces involving nonexpansive mappings and
obtained strong convergence results by imposing some standard conditions. The proximal point
algorithm has been successfully incorporated into the S-iterative scheme [15] and SP-iteration [16] to
approximate minimizers of a convex function and common fixed points of asymptotically
nonexpansive as well as quasi-nonexpansive mappings in CAT(0) spaces [17, 18].

In another development, Chaipunya and Kumam [19] discussed general proximal point algorithm
for obtaining the zero of maximal monotone set-valued vector field in complete CAT(0) spaces. With
the aid of monotonicity and surjectivity assumptions, the weak convergence theorem of the proposed
algorithm was proved under some conditions. Moreover, Kimura and Kohsaka [20] presented a
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proximal point algorithm that generates the sequence {αz} in CAT(1) spaces in the following recursive
formula

αz+1 = arg min
β∈X̃

[
g̃(β) +

1
λ̃z

tan d̃(β, αz) sin d̃(β, αz)
]
, z ≥ 1, (1.4)

where α1 ∈ X̃ is a given initial guess and the sequence {λ̃z} is positive for all z. By assuming that
the sequence generated by (1.4) is bounded below, they showed there exists at least a minimizer of a
convex function and subsequently proved that {αz} converges to its minimizer under some appropriate
conditions.

Recently, many convergence results by the proximal point algorithm for solving optimization
problems have been extended from the classical linear spaces such as Euclidean spaces, Hilbert
spaces and Banach spaces to the setting of manifolds [21–25]. The minimizers of the objective
convex functionals in the space with nonlinearity play a crucial role in the branch of analysis and
geometry. Numerous applications in computer vision, machine learning, electronic structure
computation, system balancing and robot manipulation can be considered as solving optimization
problems on manifolds see in [26–29].

Motivated by the ongoing above research, in this article, we introduce a new modified proximal
point algorithm to solve common solution of the set of common fixed points of three nonexpansive
mappings and the set of minimizer of a convex function in CAT(1) spaces. We also prove some ∆ and
strong convergence results of the presented algorithm under some mild conditions.

2. Preliminaries

In this section, we will present some basic notations, definitions, concepts and useful lemmas will
be used in the next section.

Let (X̃, d̃) be a metric space and α1, α2 ∈ X̃ such that d̃(α1, α2) = r̄. A geodesic path from α1 to α2

is an isometry µ : [0, r̄]→ X̃ such that µ(0) = α1 and µ(r̄) = α2. The image of a geodesic path is called
the geodesic segment. The space (X̃, d̃) is said to be a geodesic space if every two points of X̃ are joined
by a geodesic. (X̃, d̃) is called a uniquely geodesic space if every two points of X̃ are joined by exactly
one geodesic segment and this unique geodesic segment is denoted by [α1, α2]. For all α1, α2 ∈ X̃ and
t̄ ∈ [0, 1], there exists a unique α3 ∈ [α1, α2] such that

d̃(α1, α3) = t̄d̃(α1, α2) and d̃(α2, α3) = (1 − t̄)d̃(α1, α2).

We use the notation (1 − t̄)α1 ⊕ t̄α2 for the above mentioned unique point α3.
A subset Ω of X̃ is said to be convex if it contains every geodesic segment joining any two of its

points. The set Ω is said to be bounded if

diam(Ω) = sup{d̃(α1, α2) : α1, α2 ∈ Ω} < ∞.

Definition 2.1. For any k ∈ R, we use Mn
k to denote the following metric spaces:

(i) If k = 0, then Mn
0 is the Euclidean space En.

(ii) If k > 0, then Mn
k is obtained from the spherical space Sn by multiplying the distance function by

the constant 1
√

k
.
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(iii) If k < 0, then Mn
k is obtained from the hyperbolic space Hn by multiplying the distance function

by the constant 1
√
−k

.

A geodesic triangle ∆(α1, α2, α3) in a geodesic space (X̃, d̃) consists of three points α1, α2, α3 ∈ X̃
and three geodesic segments between each pair of vertices. A comparison triangle for a geodesic
triangle ∆(α1, α2, α3) in (X̃, d̃) is a triangle ∆(ᾱ1, ᾱ2, ᾱ3) in M2

k such that

d̃(αi, α j) = d̃M2
k
(αi, α j) for each i, j = 1, 2, 3.

Also, if k ≤ 0, then such a comparison triangle always exists in M2
k and, if k < 0, then such a triangle

exists whenever d̃(α1, α2) + d̃(α2, α3) + d̃(α3, α1) < 2Dk, where Dk = π
√

k
.

A geodesic triangle ∆(α1, α2, α3) in X̃ is said to satisfy the CAT(k) inequality if, for any p, q ∈
∆(α1, α2, α3) and for their comparison points p̄, q̄ ∈ ∆(ᾱ1, ᾱ2, ᾱ3), we have

d̃(p, q) ≤ d̃M2
k
(p̄, q̄).

A metric space (X̃, d̃) is known as D-geodesic space if any two points of X̃ with distance less than
D (where D > 0) are joined by a geodesic.

Definition 2.2. A metric space (X̃, d̃) is called a CAT(k) space if it is Dk-geodesic and any geodesic
triangle ∆(α1, α2, α3) in X̃ with d̃(α1, α2) + d̃(α2, α3) + d̃(α3, α1) < 2Dk satisfies the CAT(k) inequality.

Let (X̃, d̃) be a CAT(1) space such that d̃(α1, α2) + d̃(α2, α3) + d̃(α3, α1) < 2D1 for all α1, α2, α3 ∈ X̃.
Then the following holds for any χ ∈ [0, 1]:

cos d̃(χα1 ⊕ (1 − χ)α2, α3) ≥ χ cos d̃(α1, α3) + (1 − χ) cos d̃(α2, α3). (2.1)

Let {αz} be a bounded sequence in a complete CAT(1) space X̃. For all α ∈ X̃, we define:

r(α, {αz}) = lim sup
z→∞

d̃(α, αz).

The asymptotic radius r({αz}) is given by

r({αz}) = inf{r(α, αz) : α ∈ X̃}

and the asymptotic center A({αz}) of {αz} is defined as:

A({αz}) = {α ∈ X̃ : r(α, αz) = r({αz})}.

Definition 2.3. Let (X̃, d̃) be a CAT(1) space. A sequence {αz} in X̃ is said to be ∆-convergent to a
point α ∈ X̃ if α is the unique asymptotic center of every subsequence {αzk} of {αz}. In this case, we
write ∆-lim

z→∞
αz = α.

Definition 2.4. A mapping θ : X̃ → X̃ is said to be demi-compact if, for any sequence {αz} in Ω such
that lim

z→∞
d̃(αz, θαz) = 0, {αz} has a convergent subsequence.

Definition 2.5. Let (X̃, d̃) be a geodesic metric space.
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(i) Let α1, α2, α3 ∈ P̃, where P̃ is an open set in X̃. Then, for all R ∈ [0, 2], P̃ is said to be a CR-
domain if, for any minimal geodesic µ : [0, 1] → X̃ between α2 and α3 with χ ∈ [0, 1], we have
the following:

d̃2(α1, (1 − χ)α2 ⊕ χα3) ≤ (1 − χ)d̃2(α1, α2) + χd̃2(α1, α3) −
R
2

(1 − χ)χd̃2(α2, α3). (2.2)

(ii) A geodesic metric space (X̃, d̃) is known as R-convex if X̃ is itself a CR-domain for any R ∈ [0, 2].

A CAT(1) space X̃ is said to be admissible if d̃(α1, α2) < π
2 for all α1, α2 ∈ X̃. Further, the sequence

{αz} is said to be spherically bounded in X̃ if

inf
β∈X̃

lim sup
z→∞

d̃(β, αz) <
π

2
.

A function g̃ : X̃ → (−∞,∞] is said to be proper if

Dom(g̃) = {α ∈ X̃ : g̃(α) ∈ R} , ∅.

Also, g̃ is said to be lower semi-continuous if the set K = {α ∈ X̃ : g̃(α) ≤ ρ} is closed in X̃ for all
ρ ∈ R.

For all λ̃ > 0, define the resolvent of a proper lower semi-continuous function g̃ in admissible
CAT(1) spaces as follows:

Rλ(α) = arg min
β∈X̃

[
g̃(β) +

1
λ̃

tan d̃(α, β) sin d̃(α, β)
]
, for all α ∈ X̃.

The mapping Rλ̃ is well defined and the set of fixed points of the resolvent associated with g̃
coincides with the set of minimizers of g̃ [30].

Next, we have the following important lemmas:

Lemma 2.6. [20] Let (X̃, d̃) be an admissible complete CAT(1) space and g̃ : X̃ → (−∞,∞] be a
proper lower semi-continuous convex function. If λ̃ > 0, α ∈ X̃ and u ∈ arg min

X̃
g̃, then the following

inequalities hold:
π

2

( 1
cos2 d̃(Rλ̃α, α)

+ 1
)
(cos d̃(Rλ̃α, α) cos d̃(u,Rλ̃α) − cos d̃(u, α)) ≥ λ(g̃(Rλ̃α) − g̃(u)) (2.3)

and
cos d̃(Rλ̃α, α) cos d̃(u,Rλ̃α) ≥ cos d̃(u, α). (2.4)

Lemma 2.7. [30] Let (X̃, d̃) be a admissible complete CAT(1) space and g̃ : X̃ → (−∞,∞] be a proper
lower semi-continuous convex function. Then, g̃ is ∆-lower semi-continuous.

Lemma 2.8. [5] Let (X̃, d̃) be a admissible complete CAT(1) space and {αz} be a spherical bounded
sequence in X̃. If {d̃(αz, p̃)} is convergent for all p̃ ∈ W∆({αz}), then the sequence {αz} is ∆-convergent.

In 2014, Panyanak [7] obtained the demiclosedness principle for a total asymptotically mapping
in CAT(k) spaces. Since every nonexpansive mapping is a total asymptotically mapping, we have the
following result for a nonexpansive mappings:

Lemma 2.9. Let θ : Ω → Ω be a nonexpansive mapping defined on a nonempty closed convex subset
of a complete CAT(1) space (X̃, d̃). If {αz} is a bounded sequence with lim

z→∞
d̃(αz, θαz) = 0 and ∆-

lim
z→∞

αz = β, then β ∈ Ω and θβ = β.
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3. Main results

Lemma 3.1. Let (X̃, d̃) be an admissible complete CAT(1) space and g̃ : X̃ → (−∞,∞] be a proper
lower semi-continuous convex function. Let θ1, θ2 and θ3 be three nonexpansive mappings on X̃ such
that ω = F̃(θ1) ∩ F̃(θ2) ∩ F̃(θ3) ∩ arg min

α∈X̃
g̃(α) , ∅. Assume that {χz}, {ρz} and {µz} are sequences in

[a, b] for some a, b ∈ (0, 1) for all z ≥ 1 and {λ̃z} is a sequence such that λ̃z ≥ λ > 0 for all z ≥ 1 and
for some λ. Suppose that the sequence {αz} is generated in the following manner for α1 ∈ X̃:

ξz = arg min
β∈X̃

[g̃(β) + 1
λ̃z

tan(d̃(β, αz))sin(d̃(β, αz))],

γz = (1 − χz)αz ⊕ χzθ1ξz,

βz = (1 − ρz)θ1αz ⊕ ρzθ2γz,

αz+1 = (1 − µz)θ2βz ⊕ µzθ3βz

(3.1)

for each z ≥ 1. Then, we have the following:

(i) lim
z→∞

d̃(αz, p̃) exists for all p̃ ∈ ω.

(ii) lim
z→∞

d̃(αz, ξz) = 0.

(iii) lim
z→∞

d̃(αz, θ1αz) = lim
z→∞

d̃(αz, θ2αz) = lim
z→∞

d̃(αz, θ3αz) = 0.

Proof. First, we will show that {αz} is spherically bounded. Note that ξz = Rλ̃z
αz for all z ≥ 1. Let

p̃ ∈ ω. Then, from Lemma 2.6, we have

min(cos d̃( p̃, ξz), cos d̃(ξz, αz)) ≥ cos d̃( p̃, ξz)cos d̃(ξz, αz) ≥ cos d̃(p̃, αz), (3.2)

which implies that
max{d̃(p̃, ξz), d̃(ξz, αz)} ≤ d̃( p̃, αz). (3.3)

Since, θ1, θ2 and θ3 are nonexpansive mappings and X̃ is admissible, using (2.1), we get

cos d̃( p̃, γz) = cos d̃( p̃, (1 − χz)αz ⊕ χzθ1ξz)
≥ (1 − χz)cos d̃( p̃, αz) + χzcos d̃(p̃, θ1ξz)
≥ (1 − χz)cos d̃(p̃, αz) + χzcos d̃(p̃, ξz)
≥ (1 − χz)cos d̃(p̃, αz) + χzcos d̃(p̃, αz)
= cos d̃( p̃, αz),

(3.4)

cos d̃( p̃, βz) = cos d̃(p̃, (1 − ρz)θ1αz ⊕ ρzθ2γz)
≥ (1 − ρz)cos d̃( p̃, θ1αz) + ρzcos d̃(p̃, θ2γz)
≥ (1 − ρz)cos d̃( p̃, αz) + ρzcos d̃( p̃, γz)
≥ (1 − ρz)cos d̃( p̃, αz) + ρzcos d̃( p̃, αz)
= cos d̃(p̃, αz),

(3.5)

and
cos d̃( p̃, αz+1) = cos d̃( p̃, (1 − µz)θ2βz ⊕ µzθ3βz)

≥ (1 − µz)cos d̃( p̃, θ2βz) + µzcos d̃( p̃, θ3βz)
≥ (1 − µz)cos d̃( p̃, αz) + µzcos d̃( p̃, αz)
= cos d̃( p̃, αz)

(3.6)
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which yields
d̃( p̃, αz+1) ≤ d̃( p̃, αz) ≤ d̃( p̃, α1) <

π

2
. (3.7)

It follows from (3.3) and (3.7) that

lim sup
z→∞

d̃( p̃, ξz) ≤ lim sup
z→∞

d̃( p̃, αz) <
π

2
.

Therefore, the sequences {ξz} and {αz} are spherically bounded. Also, sup
z≥1

d̃(αz, ξz) <
π

2
and

lim
z→∞

d̃( p̃, αz) <
π

2
exists for all p̃ ∈ ω. Let

lim
n→∞

d̃(p̃, αz) = ζ ≥ 0. (3.8)

Now, we show that lim
z→∞

d̃(αz, ξz) = 0. It follows from

cos d̃( p̃, αz+1) = cos d̃( p̃, (1 − µz)θ2βz ⊕ µzθ3βz)
≥ (1 − µz)cos d̃( p̃, θ2βz) + µzcos d̃(p̃, θ3βz)
≥ cos d̃( p̃, αz) − µzcos d̃( p̃, αz) + µzcos d̃(p̃, βz)

which implies that

µzcos d̃( p̃, αz) ≥ cos d̃( p̃, αz) − cos d̃(p̃, αz+1) + µzcos d̃(p̃, βz)

i.e.,

cos d̃( p̃, αz) ≥
1
µz

(cos d̃( p̃, αz) − cos d̃( p̃, αz+1)) + cos d̃(p̃, βz).

Since µz ≥ a > 0 for each z ≥ 1, we get

cos d̃( p̃, αz) ≥
1
a

(cos d̃( p̃, αz) − cos d̃(p̃, αz+1)) + cos d̃( p̃, βz), (3.9)

by using (3.8), which yields

ζ = lim inf
z→∞

cos d̃( p̃, αz) ≥ lim inf
z→∞

cos d̃( p̃, βz). (3.10)

Also, from (3.5), we have

lim sup
z→∞

cos d̃( p̃, βz) ≥ lim sup
z→∞

cos d̃(p̃, αz) = ζ. (3.11)

Thus, it follows from (3.10) and (3.11), we obtain

lim
z→∞

cos d̃( p̃, βz) = ζ. (3.12)

Next, we consider

cos d̃(p̃, βz) = cos d̃( p̃, (1 − ρz)θ1αz ⊕ ρzθ2γz)
≥ (1 − ρz)cos d̃( p̃, θ1αz) + ρzcos d̃( p̃, γz)
≥ cos d̃( p̃, αz) − ρzcos d̃( p̃, αz) + ρzcos d̃(p̃, γz),
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by using the fact that ρz ≥ a > 0 for all z ≥ 1 gives

cos d̃(p̃, αz) ≥
1
a

(cos d̃( p̃, αz) − cos d̃( p̃, βz)) + cos d̃( p̃, γz), (3.13)

it follows from (3.8) and (3.12), which yields

ζ = lim inf
z→∞

cos d̃( p̃, αz) ≥ lim inf
z→∞

cos d̃( p̃, γz). (3.14)

Also, from (3.4), we have

lim sup
z→∞

cos d̃( p̃, γz) ≥ lim sup
z→∞

cos d̃( p̃, αz) = ζ. (3.15)

Thus, from (3.14) and (3.15), we obtain

lim
z→∞

cos d̃( p̃, γz) = ζ. (3.16)

From (3.3) and (3.4), we get

cos d̃(p̃, γz) ≥ (1 − χz)cos d̃(p̃, αz) + χzcos d̃( p̃, ξz)
≥ (1 − χz)cos d̃(p̃, αz) + χz

cos d̃(p̃,αz)
cos d̃(ξz,αz)

= cos d̃(p̃, αz) + χzcos d̃(p̃, αz)[ 1
cos d̃(ξz,αz)

− 1]

i.e.,
cos d̃( p̃, γz)
cos d̃(p̃, αz)

− 1 ≥ χz[
1

cos d̃(ξz, αz)
− 1]

Since χz ≥ a > 0 for each z ≥ 1, from (3.8) and (3.16), we get

lim
z→∞

d̃(ξz, αz) = 0, (3.17)

which implies that
lim
z→∞

d̃(Rλ̃z
αz, αz) = 0.

Also, as λ̃z ≥ λ > 0 for each z ≥ 1, we obtain

lim
z→∞

d̃(Rλαz, αz) = 0.

Next, we prove that lim
z→∞

d̃(αz, θ1αz) = lim
z→∞

d̃(αz, θ2αz) = lim
z→∞

d̃(αz, θ3αz) = 0. From (2.2), we have

d̃2(p̃, γz) = d̃2( p̃, (1 − χz)αz ⊕ χzθ1ξz)
≤ (1 − χz)d̃2( p̃, αz) + χzd̃2(p̃, θ1ξz) − R

2 (1 − χz)χzd̃2(αz, θ1ξz)
≤ (1 − χz)d̃2( p̃, αz) + χzd̃2( p̃, αz) − R

2 abd̃2(αz, θ1ξz)
= d̃2( p̃, αz) − R

2 abd̃2(αz, θ1ξz),

which yields

d̃2(αz, θ1ξz) ≤
2

Rab
[d̃2( p̃, αz) − d̃2( p̃, γz)].
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Thus, we obtain
lim
z→∞

d̃(αz, θ1ξz) = 0. (3.18)

By using triangle inequality along with (3.17) and (3.18), we get

d̃(αz, θ1αz) ≤ d̃(αz, θ1ξz) + d̃(θ1ξz, θ1αz)
≤ d̃(αz, θ1ξz) + d̃(ξz, αz)
→ 0 as z→ ∞.

(3.19)

Next, we consider

d̃2(p̃, βz) = d̃2( p̃, (1 − ρz)θ1αz ⊕ ρzθ2γz)
≤ (1 − ρz)d̃2(p̃, θ1αz) + ρzd̃2(p̃, θ2γz) − R

2 (1 − ρz)ρzd̃2(θ1αz, θ2γz)
≤ (1 − ρz)d̃2( p̃, αz) + ρzd̃2( p̃, αz) − R

2 abd̃2(θ1αz, θ2γz)
= d̃2( p̃, αz) − R

2 abd̃2(θ1αz, θ2γz),

which is equivalent to

d̃2(θ1αz, θ2γz) ≤
2

Rab
[d̃2( p̃, αz) − d̃2( p̃, βz)].

Implies that
lim
z→∞

d̃(θ1αz, θ2γz) = 0. (3.20)

Also,
d̃(γz, αz) = d̃((1 − χz)αz ⊕ χzθ1ξz, αz) ≤ χzd̃(θ1ξz, αz),

by using (3.18), then we get
lim
z→∞

d̃(γz, αz) = 0. (3.21)

By using triangle inequality along with (3.19)–(3.21), then we get

d̃(αz, θ2αz) ≤ d̃(αz, θ1αz) + d̃(θ1αz, θ2γz) + d̃(θ2γz, θ2αz)
≤ d̃(αz, θ1αz) + d̃(θ1αz, θ2γz) + d̃(γz, αz)
→ 0 as z→ ∞.

(3.22)

Now, we have

d̃2(p̃, αz+1) = d̃2( p̃, (1 − µz)θ2βz ⊕ µzθ3βz)
≤ (1 − µz)d̃2(p̃, θ2βz) + µzd̃2( p̃, θ3βz) − R

2 (1 − µz)µzd̃2(θ2βz, θ3βz)
≤ (1 − µz)d̃2(p̃, αz) + µzd̃2( p̃, αz) − R

2 abd̃2(θ2βz, θ3βz)
= d̃2( p̃, αz) − R

2 abd̃2(θ2βz, θ3βz),

which implies that

d̃2(θ2βz, θ3βz) ≤
2

Rab
[d̃2( p̃, αz) − d̃2( p̃, αz+1)].

Hence, we obtain
lim
z→∞

d̃(θ2βz, θ3βz) = 0. (3.23)
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Consider,
d̃(βz, αz) = d̃((1 − ρz)θ1αz ⊕ ρzθ2γz, αz)

≤ (1 − ρz)d̃(θ1αz, αz) + ρzd̃(θ2γz, αz)
≤ (1 − ρz)d̃(θ1αz, αz) + ρz(d̃(θ2γz, θ1αz) + d̃(θ1αz, αz)),

it follows from (3.19) and (3.20). So, we get

lim
z→∞

d̃(βz, αz) = 0. (3.24)

By using triangle inequality along with (3.19)–(3.24), which yields

d̃(αz, θ3αz) ≤ d̃(αz, θ1αz) + d̃(θ1αz, θ2γz) + d̃(θ2γz, θ2βz) + d̃(θ2βz, θ3βz) + d̃(θ3βz, θ3αz)
≤ d̃(αz, θ1αz) + d̃(θ1αz, θ2γz) + d̃(γz, αz) + d̃(αz, βz) + d̃(θ2βz, θ3βz) + d̃(βz, αz)
→ 0 as z→ ∞.

(3.25)

Thus, the assertion (iii) is proven. This completes the proof. �

Theorem 3.2. Let (X̃, d̃) be an admissible CAT(1) space and g̃ : X̃ → (−∞,∞] be a proper lower semi-
continuous convex function. Then, the sequence {αz} generated by (3.1) ∆-converges to an element of
ω.

Proof. Let p̃ ∈ ω, then g̃(p̃) ≤ g̃(ξz) for each z ≥ 1. Now, from Lemma 2.6, we get

λ̃z(g̃(ξz) − g̃( p̃)) ≤
π

2

( 1
cos2d̃(ξz, αz)

+ 1
)
(cos d̃(ξz, αz)cos d̃( p̃, ξz) − cos d̃( p̃, αz)), (3.26)

which yields

0 ≤ λ̃z(g̃(ξz) − g̃( p̃)) ≤
π

2

( 1
cos2d̃(ξz, αz)

+ 1
)
(cos d̃(ξz, αz)cos d̃( p̃, ξz) − cos d̃( p̃, αz)). (3.27)

Since λ̃z > λ > 0 for each z ≥ 1, from Lemma 3.1, we obtain

lim
z→∞

d̃(ξz, αz) = 0, lim
z→∞

d̃( p̃, αz) and lim
z→∞

d̃(p̃, ξz) exist. (3.28)

From (3.27) and (3.28), we have
lim
z→∞

g̃(ξz) = in f g̃(X̃). (3.29)

Now, we claim that W∆({αz}) ⊂ ω. Let w̄ ∈ W∆({αz}) then, there exists a subsequence {αzi} of {αz}which
∆-converges to the point w̄. Using the fact that lim

z→∞
d̃(ξz, αz) = 0, we can say that the subsequence {ξzi}

of {ξz} also ∆-converges to the point w̄. From Lemma 2.7 and (3.29), we have

g̃(w̄) ≤ lim inf
i→∞

g̃(ξzi) ≤ lim
z→∞

g̃(ξz) = in f g̃(X̃).

Thus, w̄ ∈ arg min
α∈X̃

which yields W∆({αz}) ⊂ arg min
α∈X̃

g̃(α). Also,

lim
z→∞

d̃(αz, θ1αz) = lim
z→∞

d̃(αz, θ2αz) = lim
z→∞

d̃(αz, θ3αz) = 0

and {αz} ∆-converges to w̄. So, it follows from Lemma 2.9 that w̄ ∈ F̃(θ1) ∩ F̃(θ2) ∩ F̃(θ3) implies that
W∆({αz}) ⊂ ω. It follows from (3.28) and W∆({αz}) ⊂ ω, we can observe that d̃(w̄, αz) is convergent for
all w̄ ∈ W∆({αz}). By using Lemma 2.8, we obtain that {αz} ∆-converges to an element of ω. �
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Theorem 3.3. Let (X̃, d̃) be an admissible complete CAT(1) space and g̃ : X̃ → (−∞,∞] be a proper
lower semi-continuous convex function. Then, the sequence {αz} generated by (3.1) converges strongly
to an element of ω if and only if lim inf

z→∞
d̃(αz, ω) = 0, where d̃(αz, ω) = inf{d̃(α, p̃) : p̃ ∈ ω}.

Proof. It is obvious that lim inf
z→∞

d̃(αz, ω) = 0 if the sequence {αz} converges to a point p̃ ∈ ω.

For conversely part, let lim inf
z→∞

d̃(αz, ω) = 0. For all p̃ ∈ ω, we have

d̃(αz+1, p̃) ≤ d̃(αz, p̃),

implies that
d̃(αz+1, ω) ≤ d̃(αz, ω).

Thus, lim
z→∞

d̃(αz, ω) = 0. Next, we show that {αz} is a Cauchy sequence in X̃. Let ε >0 be arbitrarily

chosen. Since lim
z→∞

d̃(αz, ω) = 0, there exists z0 such that for all z ≥ z0, we have

d̃(αz, ω) <
ε

4
.

In particular, we have

inf{d̃(αz0 , p̃) : p̃ ∈ ω} <
ε

4
,

so there must exist a p̃∗ ∈ ω such that

d̃(αz0 , p̃∗) <
ε

2
.

Thus, for m, z ≥ z0, we have

d̃(αz+m, αz) ≤ d̃(αz+m, p̃∗) + d̃(αz, p̃∗) < 2d̃(αz0 , p̃∗) < 2(
ε

2
) = ε,

which implies that {αz} is a Cauchy sequence in X̃. Thus, {αz} converges to a point α∗ in X̃ and so
d̃(α∗, ω) = 0. Also, α∗ ∈ ω as ω is closed. This completes the proof. �

A family {P,Q,R, S } of mappings is said to satisfy condition (τ) if there exists a nondecreasing
function f : [0,∞)→ [0,∞) with f (0) = 0 and f (ζ) > 0 for all ζ ∈ (0,∞) such that

d̃(α, Pα) ≥ f (d̃(α, F̃))

or

d̃(α,Qα) ≥ f (d̃(α, F̃))

or

d̃(α,Rα) ≥ f (d̃(α, F̃))

or

d̃(α, Sα) ≥ f (d̃(α, F̃))

for all α ∈ X̃, where F̃ = F̃(P) ∩ F̃(Q) ∩ F̃(R) ∩ F̃(S ).
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Theorem 3.4. Let (X̃, d̃) be an admissible complete CAT(1) space and g̃ : X̃ → (∞,∞] be a proper
lower semi-continuous convex function. If the mappings Rλ, θ1, θ2 and θ3 satisfy the condition (τ), then
the sequence {αz} generated by (3.1) converges strongly to an element of ω.

Proof. From Lemma 3.1, lim
z→∞

d̃(αz, p̃) exists for all p̃ ∈ ω. So lim
z→∞

d̃(αz, ω) exists. Now, by using

condition (τ), we get
lim
z→∞

f (d̃(αz, ω)) ≤ lim
z→∞

d̃(αz,Rλαz) = 0

or
lim
z→∞

f (d̃(αz, ω)) ≤ lim
z→∞

d̃(αz, θ1αz) = 0

or
lim
z→∞

f (d̃(αz, ω)) ≤ lim
z→∞

d̃(αz, θ2αz) = 0

or
lim
z→∞

f (d̃(αz, ω)) ≤ lim
z→∞

d̃(αz, θ3αz) = 0.

Therefore, lim
z→∞

f (d̃(αz, ω)) = 0 which by using property of f , we obtain lim
z→∞

d̃(αz, ω) = 0. Thus, the

proof follows from Theorem 3.3. �

Theorem 3.5. Let (X̃, d̃) be an admissible complete CAT(1) space and g̃ : X̃ → (∞,∞] be a proper
lower semi-continuous convex function. If the mappings Rλ or θ1 or θ2 or θ3 is demi-compact, then the
sequence {αz} generated by (3.1) converges strongly to an element of ω.

Proof. From Lemma 3.1, we have

lim
z→∞

d̃(αz,Rλαz) = lim
z→∞

d̃(αz, θ1αz) = lim
z→∞

d̃(αz, θ2αz) = lim
z→∞

d̃(αz, θ3αz) = 0. (3.30)

Without loss of generality, we may assume that Rλ or θ1 or θ2 or θ3 is demi-compact, then there exists
a subsequence {αzi} of {αz} such that {αzi} converges strongly to p̃∗ ∈ X̃. By using (3.30) and the
nonexpansiveness of the mappings Rλ, θ1, θ2, θ3, then we obtain

d̃(p̃∗,Rλ p̃∗) = d̃( p̃∗, θ1 p̃∗) = d̃( p̃∗, θ2 p̃∗) = d̃( p̃∗, θ3 p̃∗) = 0,

which yields p̃∗ ∈ ω. Further, we can prove the strong convergence of {αz} to an element of ω. This
completes the proof. �

4. Concluding remarks and open question

1) Our main results generalized and extended the results of Pakkaranang et al. [31, 32] from one
onexpansive mapping and Wairojjana and Saipara [33] from two nonexpansive mappings to three
nonexpansive mappings involving lower semi-continuous convex function in CAT(1) spaces.

2) Theorem 3.2 extends that of Bačák [12] in CAT(0) spaces and Kohsaka and Kimura [30] in
CAT(1) spaces. In fact, we present a new modified proximal point algorithm for solving the
convex minimization problem as sell as the common fixed point problem of nonexpansive
mappings in CAT(1) spaces.

Question 1. Can we construct some examples or numerical results of the resolvent operator and a
convex function in the setting of CAT(1) spaces?
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5. Conclusions

In this paper, a new modified proximal point algorithm involving three nonexpansive mappings in
the setting of CAT(1) spaces for solving convex minimization problem and common fixed point
problem have been established. Strong and ∆-convergence theorems under mild conditions of the
proposed algorithm converges to common solution between convex minimization problem and
common fixed point problem have been proven.
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