Processing math: 100%
Research article

Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in FCM-spaces

  • The goal of this manuscript is to obtain some tripled fixed point results under a new contractive condition and triangular property in the context of fuzzy cone metric spaces (FCM-spaces). Moreover, two examples and corollaries are given to validate our work. Ultimately, as applications, the notion of Lebesgue integral is represented by the fuzzy method to discuss the existence of fixed points. Also, the existence and uniqueness solution for a system of Volterra integral equations are studied by the theoretical results.

    Citation: Hasanen A. Hammad, Hassen Aydi, Choonkil Park. Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in FCM-spaces[J]. AIMS Mathematics, 2022, 7(5): 9003-9022. doi: 10.3934/math.2022501

    Related Papers:

    [1] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
    [2] Mohammed Shehu Shagari, Trad Alotaibi, OM Kalthum S. K. Mohamed, Arafa O. Mustafa, Awad A. Bakery . On existence results of Volterra-type integral equations via $ C^* $-algebra-valued $ F $-contractions. AIMS Mathematics, 2023, 8(1): 1154-1171. doi: 10.3934/math.2023058
    [3] Hasanen A. Hammad, Doha A. Kattan . Strong tripled fixed points under a new class of F-contractive mappings with supportive applications. AIMS Mathematics, 2025, 10(3): 5785-5805. doi: 10.3934/math.2025266
    [4] Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630
    [5] Yao Yu, Chaobo Li, Dong Ji . Fixed point theorems for enriched Kannan-type mappings and application. AIMS Mathematics, 2024, 9(8): 21580-21595. doi: 10.3934/math.20241048
    [6] Mohammed Shehu Shagari, Qiu-Hong Shi, Saima Rashid, Usamot Idayat Foluke, Khadijah M. Abualnaja . Fixed points of nonlinear contractions with applications. AIMS Mathematics, 2021, 6(9): 9378-9396. doi: 10.3934/math.2021545
    [7] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in $ b $-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
    [8] Pakhshan M. Hasan, Nejmaddin A. Sulaiman, Fazlollah Soleymani, Ali Akgül . The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space. AIMS Mathematics, 2020, 5(1): 226-235. doi: 10.3934/math.2020014
    [9] Muhammad Rashid, Muhammad Sarwar, Muhammad Fawad, Saber Mansour, Hassen Aydi . On generalized $ \Im_b $-contractions and related applications. AIMS Mathematics, 2023, 8(9): 20892-20913. doi: 10.3934/math.20231064
    [10] Saud Fahad Aldosary, Mohamed M. A. Metwali, Manochehr Kazemi, Ateq Alsaadi . On integrable and approximate solutions for Hadamard fractional quadratic integral equations. AIMS Mathematics, 2024, 9(3): 5746-5762. doi: 10.3934/math.2024279
  • The goal of this manuscript is to obtain some tripled fixed point results under a new contractive condition and triangular property in the context of fuzzy cone metric spaces (FCM-spaces). Moreover, two examples and corollaries are given to validate our work. Ultimately, as applications, the notion of Lebesgue integral is represented by the fuzzy method to discuss the existence of fixed points. Also, the existence and uniqueness solution for a system of Volterra integral equations are studied by the theoretical results.



    Let X be a nonempty set. In 2011, Berinde and Borcut [1] initiated the concept of a tripled fixed point of a mapping H:X×X×XX. Some tripled fixed (coincidence) point theorems are obtained via the mixed monotone (g-monotone) property, see [2]. Their obtained results are generalizations and extensions of the work due to Bhaskar and Lakshmikantham [3]. As an application, they studied the existence of solutions of a periodic boundary value problem whose coupled fixed point technique cannot solve such a problem.

    The concept of cone metric spaces was reintroduced in 2007 by Huang and Zhang [4] by replacing the set of real numbers with an ordered Banach space. This concept was first initiated in literature by showing its importance via a numerical approach by Kantorovich [5]. Note that cone (normed) metric spaces have interesting applications in fixed point theory and the numerical analysis. For instance, see [6,7,8,9,10].

    The notion of a fuzzy set was appeared in 1965 by Zadeh [11]. This notion has hardly been studied and extended. Its application on variant fields became fruitful and needful. Data analysis, computational intelligence and artificial intelligence are intensively developed. This theory is also generalized and extended in many directions by means of the theories of aggregation operators and triangular norms and co-norms, see [12,13,14,15]. Kramosil and Michalek [16] initiated the notion of a fuzzy metric space. Defining a fuzzy metric is one of the essential problems in fuzzy mathematics, which was frequently used in pattern recognition and fuzzy optimization. In 1994, George and Veeramani [17] presented some fixed point results in fuzzy metric spaces.

    On the other hand, by combining the concepts of a cone metric space setting and a fuzzy set, Oner et al. [18] presented in 2015 the notion of a fuzzy cone metric space (as an abbreviation, (FCM-spaces) and the fuzzy cone Banach contraction result was established. Further results in this direction have been investigated, see [19,20,21,22,23]. Very recently, Waheed et al. [24] established some coupled fixed point results in FCM-spaces. Going in the same direction, the aim of this work is to present some tripled fixed point results in this setting for new contractive mappings via a triangular property. We also give nontrivial examples and two illustrated applications making effective the presented results. To our knowledge, this work is the first time to deal with tripled fixed point notion in FCM-spaces.

    In mathematics, the Volterra integral equations are a special type of integral equations. They are divided into two groups referred to as the first and the second kind. It is known that linear and nonlinear Volterra integral equations arise in many scientific fields such as the population dynamics, spread of epidemics, and semi-conductor devices. Finding solutions of linear or nonlinear Volterra integral equations is highly interesting for researchers and scientists in this field and there are available studies to find analytical or numerical solutions for Volterra integral equations (see [25,26,27,28]). In fact, Volterra integral equations are usually solved analytically or numerically by finding approximate solutions to the problems using numerical or analytical approximation methods. For instance, well-posedness and regularity of backward (doubly) stochastic Volterra integral equations have been studied in [29,30]. Among the methods used to solve Volterra integral equations are Sinc-collocation method [31], Barycentric Lagrange interpolation and the equidistance Chebyshev interpolation nodes [32], relaxed Monte Carlo method [33], etc. We will be concerned in this work to use a fixed point technique via a tripled fixed point approach to solve a system of Volterra integral equations. We will also present an application on Lebesgue integral type mappings using a tripled fixed point result.

    This paper is organized as follows: Section 2 giving the essential definitions and known results in the literature that help us in the rest of the paper. In Section 3, we prove our main tripled fixed point results and we provide some concrete examples. The aim of Section 4 is to apply our obtained results by ensuring the existence of a tripled fixed point for a Lebesgue integral mapping and a unique solution for a system of Volterra integral equations.

    Definition 2.1. [34] An operation :[0,1]×[0,1][0,1] is described as a continuous ν norm if it fulfills the following:

    is associative and commutative,

    is continuous,

    ● for each λ[0,1], 1λ=λ,

    ● for each λ1,λ2,β1,β2[0,1], if λ1λ2 and β1β2, then λ1β1λ2β2.

    Here N, , ϑ and νnorm, represent the set of natural numbers, the real Banach space, a zero element in and a continuous νnorm, respectively.

    Definition 2.2. [4] A subset Υ is called a cone if the following hold:

    (1) Υ is closed and Υ{ϑ};

    (2) If λ1,β1(0,) and θ,ρΥ, then λ1θ+β1ρΥ;

    (3) If both θΥ and θΥ, then θ=ϑ.

    A partial ordering on a cone Υ is described as θρρθΥ. θρ stands for θρ and θρ, while θρ stands for ρθint(Υ). Here each cone has non-empty interior.

    Definition 2.3. [18] A 3tuple (Ω,Θϖ,) is called an FCMspace if Υ is a cone in , Ω is an arbitrary set, is a νnorm, and Θϖ is a fuzzy set on Ω2×int(Υ) such that the following are satisfied, for all θ,ρ,δΩ and ν,μint(Υ),

    (1) Θϖ(θ,ρ,ν)>ϑ and Θϖ(θ,ρ,ν)=1θ=ρ;

    (2) Θϖ(θ,ρ,ν)=Θϖ(ρ,θ,ν);

    (3) Θϖ(θ,ρ,ν)Θϖ(ρ,δ,μ)Θϖ(θ,δ,ν+μ);

    (4) Θϖ(θ,ρ,):int(Υ)[0,1] is continuous.

    Definition 2.4. [18] Let (Ω,Θϖ,) be an FCM space, θΩ and (θi) be a sequence in Ω.

    (θi) is called convergent to some θ if for νϑ and 0<u<1, there exists i1N such that Θϖ(θi,θ,ν)>1u, i>i1, and we can write limiθi=θ.

    (θi) is called a Cauchy sequence if for νϑ and 0<u<1, there exists i1N such that

    Θϖ(θk,θi,ν)>1u, k,i>i1.

    ● If every Cauchy sequence is convergent in Ω, then the triple (Ω,Θϖ,) is called complete.

    (θi) is called a fuzzy cone contraction (Fcc) if there exists β(0,1) such that

    1Θϖ(θi,θi+1,ν)1β(1Θϖ(θi1,θi,ν)1), νϑ, i1.

    Definition 2.5. [35] Assume that (Ω,Θϖ,) is an FCMspace. Then the fuzzy cone metric Θϖ is called triangular if

    1Θϖ(θ,δ,ν)1(1Θϖ(θ,ρ,ν)1)+(1Θϖ(ρ,δ,ν)1), θ,ρ,δΩ, νϑ.

    Lemma 2.6. [18] Suppose that (Ω,Θϖ,) is an FCMspace, θΩ and (θi) is asequence in Ω, then

    θiθlimiΘϖ(θi,θ,ν)=1, for νϑ.

    Definition 2.7. [18] Let (Ω,Θϖ,) be an FCM space and Ξ:ΩΩ. Then Ξ is called an Fcc if there exists g(0,1) such that

    (1Θϖ(Ξθ,Ξρ,ν)1)g(1Θϖ(θ,ρ,ν)1), θ,ρΩ, νϑ.

    Definition 2.8. [3] A pair (θ,ρ) is called a coupled FP of the mapping Ξ:Ω×ΩΩ if

    Ξ(θ,ρ)=θ and Ξ(ρ,θ)=ρ.

    Definition 2.9. [1] Let Ω. Then a triple (θ,ρ,δ)Ω3 is called a TFP of the mapping Ξ:Ω3Ω if θ=Ξ(θ,ρ,δ), ρ=Ξ(ρ,δ,θ) and δ=Ξ(δ,θ,ρ).

    Example 2.10. Let Ω=[0,) and Ξ:Ω3Ω be a mapping given by

    Ξ(θ,ρ,δ)=θ+ρ+δ3, θ,ρ,δΩ.

    Then Ξ has a TFP when θ=ρ=δ.

    This part is concerned with presenting the main theoretical results of our paper. In addition, some supporting examples are provided.

    Theorem 3.1. Let Ξ:Ω3Ω be a mapping defined ona complete FCMspace (Ω,Θϖ,) in which Θϖ is triangular and fulfills

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1u1(1Θϖ(ϰ,ϱ,ν)1)+u2(1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϱ,ˆϱ,˜ϱ),ν)1), (3.1)

    where

    (1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϱ,ˆϱ,˜ϱ),ν)1)=(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1+1Θϖ(ϰ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1+1Θϖ(ϱ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1),

    for all ϰ,ˆϰ,˜ϰ,ϱ,ˆϱ,˜ϱΩ, νϑand u1[0,1) and u20 with u1+4u2<1. Then Ξ has a unique TFP in Ω.

    Proof. Consider ϰ0,ˆϰ0,˜ϰ0Ω. Describe sequences {ϰα}, {ˆϰα} and {˜ϰα} in Ω such that

    {Ξ(ϰα,ˆϰα,˜ϰα)=ϰα+1,Ξ(ˆϰα,˜ϰα,ϰα)=ˆϰα+1,Ξ(˜ϰα,ϰα,ˆϰα)=˜ϰα+1, for α0. (3.2)

    By (3.1), for νϑ, we have

    1Θϖ(ϰα,ϰα+1,ν)1=1Θϖ(Ξ(ϰα1,ˆϰα1,˜ϰα1),Ξ(ϰα,ˆϰα,˜ϰα),ν)1u1(1Θϖ(ϰα1,ϰα,ν)1)+u2(1Z(Ξ,(ϰα1,ˆϰα1,˜ϰα1),(ϰα,ˆϰα,˜ϰα),ν)1), (3.3)

    where

    1Z(Ξ,(ϰα1,ˆϰα1,˜ϰα1),(ϰα,ˆϰα,˜ϰα),ν)1=(1Θϖ(ϰα1,Ξ(ϰα1,ˆϰα1,˜ϰα1),ν)1+1Θϖ(ϰα,Ξ(ϰα,ˆϰα,˜ϰα),ν)1+1Θϖ(ϰα1,Ξ(ϰα,ˆϰα,˜ϰα),ν)1+1Θϖ(ϰα,Ξ(ϰα1,ˆϰα1,˜ϰα1),ν)1)=(1Θϖ(ϰα1,ϰα,ν)1+1Θϖ(ϰα,ϰα+1,ν)1+1Θϖ(ϰα1,ϰα+1,ν)1)2(1Θϖ(ϰα1,ϰα,ν)1+1Θϖ(ϰα,ϰα+1,ν)1). (3.4)

    By (3.4) and (3.3), for νϑ, we have

    1Θϖ(ϰα,ϰα+1,ν)1u1(1Θϖ(ϰα1,ϰα,ν)1)+2u2(1Θϖ(ϰα1,ϰα,ν)1+1Θϖ(ϰα,ϰα+1,ν)1).

    By simple calculations, we obtain that

    1Θϖ(ϰα,ϰα+1,ν)1(1Θϖ(ϰα1,ϰα,ν)1), for νϑ, (3.5)

    where =u1+2u212u2<1. Analogously, one can write

    1Θϖ(ϰα1,ϰα,ν)1(1Θϖ(ϰα2,ϰα1,ν)1), for νϑ. (3.6)

    By induction and from (3.5) and (3.6), for νϑ, we conclude that

    1Θϖ(ϰα,ϰα+1,ν)1(1Θϖ(ϰα1,ϰα,ν)1)2(1Θϖ(ϰα2,ϰα1,ν)1)α(1Θϖ(ϰ0,ϰ1,ν)1)0 as α.

    This implies that {ϰα} is an Fcc and hence

    limαΘϖ(ϰα,ϰα+1,ν)=1.

    Now, for >α and νϑ, we get

    1Θϖ(ϰα,ϰ,ν)11Θϖ(ϰα,ϰα+1,ν)1+1Θϖ(ϰα+1,ϰα+2,ν)1++1Θϖ(ϰ1,ϰ,ν)1α(1Θϖ(ϰ0,ϰ1,ν)1)+α+1(1Θϖ(ϰ0,ϰ1,ν)1)++1(1Θϖ(ϰ0,ϰ1,ν)1)=(α+α+1++1)(1Θϖ(ϰ0,ϰ1,ν)1)=α1(1Θϖ(ϰ0,ϰ1,ν)1)0 as α.

    This proves that the sequence {ϰα} is Cauchy. Again, regarding to the sequence ˆϰα, by (3.1), for νϑ, we get

    1Θϖ(ˆϰα,ˆϰα+1,ν)1=1Θϖ(Ξ(ˆϰα1,˜ϰα1,ϰα1),Ξ(ˆϰα,˜ϰα,ϰα),ν)1u1(1Θϖ(ˆϰα1,ˆϰα,ν)1)+u2(1Z(Ξ,(ˆϰα1,˜ϰα1,ϰα1),(ˆϰα,˜ϰα,ϰα),ν)1), (3.7)

    where

    1Z(Ξ,(ˆϰα1,˜ϰα1,ϰα1),(ˆϰα,˜ϰα,ϰα),ν)1=(1Θϖ(ˆϰα1,Ξ(ˆϰα1,˜ϰα1,ϰα1),ν)1+1Θϖ(ˆϰα,Ξ(ˆϰα,˜ϰα,ϰα),ν)1+1Θϖ(ˆϰα1,Ξ(ˆϰα,˜ϰα,ϰα),ν)1+1Θϖ(ˆϰα,Ξ(ˆϰα1,˜ϰα1,ϰα1),ν)1)=(1Θϖ(ˆϰα1,ˆϰα,ν)1+1Θϖ(ˆϰα,ˆϰα+1,ν)1+1Θϖ(ˆϰα1,ˆϰα+1,ν)1)2(1Θϖ(ˆϰα1,ˆϰα,ν)1+1Θϖ(ˆϰα,ˆϰα+1,ν)1). (3.8)

    It follows from (3.7) and (3.8) that, for νϑ,

    1Θϖ(ϰα,ϰα+1,ν)1u1(1Θϖ(ϰα1,ϰα,ν)1)+2u2(1Θϖ(ϰα1,ϰα,ν)1+1Θϖ(ϰα,ϰα+1,ν)1).

    Again, by simple calculations, we obtain that

    1Θϖ(ˆϰα,ˆϰα+1,ν)1(1Θϖ(ˆϰα1,ˆϰα,ν)1), for νϑ, (3.9)

    where =u1+2u212u2<1. Similarly, we have

    1Θϖ(ˆϰα1,ˆϰα,ν)1(1Θϖ(ˆϰα2,ˆϰα1,ν)1), for νϑ. (3.10)

    From (3.9), (3.10) and by induction for νϑ, we get

    1Θϖ(ˆϰα,ˆϰα+1,ν)1(1Θϖ(ˆϰα1,ˆϰα,ν)1)2(1Θϖ(ˆϰα2,ˆϰα1,ν)1)α(1Θϖ(ˆϰ0,ˆϰ1,ν)1)0 as α.

    This yields that the sequence {ˆϰα} is an Fcc and hence

    limαΘϖ(ˆϰα,ˆϰα+1,ν)=1.

    Now, for >α and νϑ, we get

    1Θϖ(ˆϰα,ˆϰ,ν)11Θϖ(ˆϰα,ˆϰα+1,ν)1+1Θϖ(ˆϰα+1,ˆϰα+2,ν)1++1Θϖ(ˆϰ1,ˆϰ,ν)1α(1Θϖ(ˆϰ0,ˆϰ1,ν)1)+α+1(1Θϖ(ˆϰ0,ˆϰ1,ν)1)++1(1Θϖ(ˆϰ0,ˆϰ1,ν)1)=(α+α+1++1)(1Θϖ(ˆϰ0,ˆϰ1,ν)1)=α1(1Θϖ(ˆϰ0,ˆϰ1,ν)1)0 as α.

    Hence, {ˆϰα} is a Cauchy sequence. With the same approach, one can prove that the sequence {˜ϰα} is also Cauchy in Ω. Since Ω is complete, there are ϰ, ˆϰ and ˜ϰ in Ω such that ϰαϰ, ˆϰαˆϰ and ˜ϰα˜ϰ as α. So, we can write

    limαΘϖ(ϰα,ϰ,ν)=1,limαΘϖ(ˆϰα,ˆϰ,ν)=1,limαΘϖ(˜ϰα,˜ϰ,ν)=1 for νϑ.

    Hence

    limαϰα+1=limαΞ(ϰα,ˆϰα,˜ϰα)=Ξ(limαϰα,limαˆϰα,limα˜ϰα)=Ξ(ϰ,ˆϰ,˜ϰ)=ϰ,limαˆϰα+1=limαΞ(ˆϰα,˜ϰα,ϰα)=Ξ(limαˆϰα,limα˜ϰα,limαϰα)=Ξ(ˆϰ,˜ϰ,ϰ)=ˆϰ,limα˜ϰα+1=limαΞ(˜ϰα,ϰα,ˆϰα)=Ξ(limα˜ϰα,limαϰα,limαˆϰα)=Ξ(˜ϰ,ϰ,ˆϰ)=˜ϰ.

    Therefore, a mapping Ξ has a TFP (ϰ,ˆϰ,˜ϰ) in Ω3.

    For uniqueness, assume that (ϰ1,ˆϰ1,˜ϰ1) is another TFP of Ξ such that (ϰ1,ˆϰ1,˜ϰ1)(ϰ,ˆϰ,˜ϰ). From (3.1), for νϑ, we can write

    1Θϖ(ϰ,ϰ1,ν)1=1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1u1(1Θϖ(ϰ,ϰ1,ν)1)+u2(1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϰ1,ˆϰ1,˜ϰ1),ν)1), (3.11)

    where

    1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϰ1,ˆϰ1,˜ϰ1),ν)1=(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϰ1,Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1+1Θϖ(ϰ,Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1+1Θϖ(ϰ1,Ξ(ϰ,ˆϰ,˜ϰ),ν)1)=(1Θϖ(ϰ,ϰ,ν)1+1Θϖ(ϰ1,ϰ1,ν)1+1Θϖ(ϰ,ϰ1,ν)1+1Θϖ(ϰ,ϰ1,ν)1)=2(1Θϖ(ϰ,ϰ1,ν)1). (3.12)

    From (3.12) in (3.11), we obtain that

    1Θϖ(ϰ,ϰ1,ν)1u1(1Θϖ(ϰ,ϰ1,ν)1)+2u2(1Θϖ(ϰ,ϰ1,ν)1)=(u1+2u2)(1Θϖ(ϰ,ϰ1,ν)1)=(u1+2u2)(1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1)(u1+2u2)2(1Θϖ(ϰ,ϰ1,ν)1)(u1+2u2)α(1Θϖ(ϰ,ϰ1,ν)1)0 as α,

    where u1+2u2<1. This implies that Θϖ(ϰ,ϰ1,ν)=1, for νϑ. Thus, ϰ=ϰ1. By the same manner, one can obtain ˆϰ=ˆϰ1 and ˜ϰ=˜ϰ1. This completes the proof.

    Corollary 3.2. Theorem 3.1 is also true if we replace the condition (3.1) with one of the following:

    (1) For ϰ,ˆϰ,˜ϰ,ϱ,ˆϱ,˜ϱΩ, νϑ,

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1u1(1Θϖ(ϰ,ϱ,ν)1)+u2(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1),

    for any u1[0,1) and u20 with (u1+2u2)<1.

    (2) For ϰ,ˆϰ,˜ϰ,ϱ,ˆϱ,˜ϱΩ, νϑ,

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1u1(1Θϖ(ϰ,ϱ,ν)1)+u2(1Θϖ(ϰ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1+1Θϖ(ϱ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1),

    for any u1[0,1) and u20 with u1+2u2<1.

    Example 3.3. Let Ω=(0,), be a νnorm and Θϖ:Ω2×(0,)[0,1] be described as

    Θϖ(ϰ,ϱ,ν)=νd(ϰ,ϱ)+ν, d(ϰ,ϱ)=|ϰϱ|,

    for all ϰ,ϱΩ, for ν>0. Clearly, (Ω,Θϖ,) is a complete FCMspace. Define the mapping Ξ:Ω3Ω by

    Ξ(ϰ,ϱ,)={ϰϱ21,if ϰ,ϱ,[0,1),3ϰ+3ϱ+367if ϰ,ϱ,[1,).

    Then, for νϑ,

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1=1Θϖ(ϰˆϰ˜ϰ21,ϱˆϱ˜ϱ21,ν)1=1ν(d(ϰˆϰ˜ϰ21,ϱˆϱ˜ϱ21))=121ν|ϰˆϰ˜ϰϱ+ˆϱ+˜ϱ|121ν[|(ϰϱ)+(ϰ(ϰˆϰ˜ϰ))+(ϱ(ϱˆϱ˜ϱ))+(ϰ(ϱˆϱ˜ϱ))+(ϱ(ϰˆϰ˜ϰ))|]121ν|ϰϱ|+121ν(|ϰ(ϰˆϰ˜ϰ)|+|ϱ(ϱˆϱ˜ϱ)||ϰ(ϱˆϱ˜ϱ)|+|ϱ(ϰˆϰ˜ϰ)|)=121(1Θϖ(ϰ,ϱ,ν)1)+112(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1+1Θϖ(ϰ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1+1Θϖ(ϱ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1)=121(1Θϖ(ϰ,ϱ,ν)1)+112(1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϱ,ˆϱ,˜ϱ),ν)1).

    Hence, all the conditions of Theorem 3.1 are fulfilled with u1=u2=121. Therefore, Ξ possesses a point (3,3,3) as unique TFP, that is,

    Ξ(3,3,3)=3(3)+3(3)+3(3)67=3.

    Theorem 3.4. Let (Ω,Θϖ,) be a complete FCMspace, Ξ:Ω3Ω be a given mapping and Θϖ be triangular satisfying

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1u1(1Θϖ(ϰ,ϱ,ν)1)+u2(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1)+u3(1Θϖ(ϱ,Ξ(ϰ,ˆϰ,˜ϰ),ν)Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1) (3.13)

    for all ϰ,ˆϰ,˜ϰ,ϱ,ˆϱ,˜ϱΩ, νϑand u1[0,1) and u2,u30 with u1+2u2+u3<1. Then Ξ has a unique TFP in Ω.

    Proof. Assume that the sequences given in (3.2) are valid. Then from (3.13), for νϑ, we get

    1Θϖ(ϰα,ϰα+1,ν)1=1Θϖ(Ξ(ϰα1,ˆϰα1,˜ϰα1),Ξ(ϰα,ˆϰα,˜ϰα),ν)1u1(1Θϖ(ϰα1,ϰα,ν)1)+u2(1Θϖ(ϰα1,Ξ(ϰα1,ˆϰα1,˜ϰα1),ν)1+1Θϖ(ϰα,Ξ(ϰα,ˆϰα,˜ϰα),ν)1)+u3(1Θϖ(ϰα,Ξ(ϰα1,ˆϰα1,˜ϰα1),ν)Θϖ(ϰα,Ξ(ϰα,ˆϰα,˜ϰα),ν)1)=u1(1Θϖ(ϰα1,ϰα,ν)1)+u2(1Θϖ(ϰα1,ϰα,ν)1+1Θϖ(ϰα,ϰα+1,ν)1)+u3(1Θϖ(ϰα,ϰα,ν)Θϖ(ϰα,ϰα+1,ν)1)=u1(1Θϖ(ϰα1,ϰα,ν)1)+u2(1Θϖ(ϰα1,ϰα,ν)1+1Θϖ(ϰα,ϰα+1,ν)1)+u3(1Θϖ(ϰα,ϰα+1,ν)1).

    After a routine calculation, we have

    1Θϖ(ϰα,ϰα+1,ν)1(1Θϖ(ϰα1,ϰα,ν)1), for νϑ, (3.14)

    where =u1+u21u2u3<1. Similarly,

    1Θϖ(ϰα1,ϰα,ν)1(1Θϖ(ϰα2,ϰα1,ν)1), for νϑ. (3.15)

    It follows from (3.14), (3.15) and induction that, for νϑ,

    1Θϖ(ϰα,ϰα+1,ν)1(1Θϖ(ϰα1,ϰα,ν)1)2(1Θϖ(ϰα2,ϰα1,ν)1)α(1Θϖ(ϰ0,ϰ1,ν)1)0 as α.

    This implies that {ϰα} is an Fcc and so we get

    limαΘϖ(ϰα,ϰα+1,ν)=1.

    Now, for >α and νϑ, we obtain

    1Θϖ(ϰα,ϰ,ν)11Θϖ(ϰα,ϰα+1,ν)1+1Θϖ(ϰα+1,ϰα+2,ν)1++1Θϖ(ϰ1,ϰ,ν)1α(1Θϖ(ϰ0,ϰ1,ν)1)+α+1(1Θϖ(ϰ0,ϰ1,ν)1)++1(1Θϖ(ϰ0,ϰ1,ν)1)=(α+α+1++1)(1Θϖ(ϰ0,ϰ1,ν)1)=α1(1Θϖ(ϰ0,ϰ1,ν)1)0 as α.

    This proves that the sequence {ϰα} is Cauchy. In the same scenario, it can be shown that the sequences {ˆϰα} and {˜ϰα} are Cauchy. Since Ω is complete, there are ϰ, ˆϰ and ˜ϰ in Ω such that ϰαϰ, ˆϰαˆϰ and ˜ϰα˜ϰ as α. Hence, one can write

    limαΘϖ(ϰα,ϰ,ν)=1,limαΘϖ(ˆϰα,ˆϰ,ν)=1,limαΘϖ(˜ϰα,˜ϰ,ν)=1 for νϑ.

    Thus,

    limαϰα+1=limαΞ(ϰα,ˆϰα,˜ϰα)=Ξ(limαϰα,limαˆϰα,limα˜ϰα)=Ξ(ϰ,ˆϰ,˜ϰ)=ϰ,limαˆϰα+1=limαΞ(ˆϰα,˜ϰα,ϰα)=Ξ(limαˆϰα,limα˜ϰα,limαϰα)=Ξ(ˆϰ,˜ϰ,ϰ)=ˆϰ,limα˜ϰα+1=limαΞ(˜ϰα,ϰα,ˆϰα)=Ξ(limα˜ϰα,limαϰα,limαˆϰα)=Ξ(˜ϰ,ϰ,ˆϰ)=˜ϰ.

    Therefore, a mapping Ξ possesses a TFP (ϰ,ˆϰ,˜ϰ) in Ω3.

    Now, let (ϰ1,ˆϰ1,˜ϰ1) be a TFP of Ξ such that (ϰ1,ˆϰ1,˜ϰ1)(ϰ,ˆϰ,˜ϰ). From (3.1), for νϑ, we have

    1Θϖ(ϰ,ϰ1,ν)1=1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1u1(1Θϖ(ϰ,ϰ1,ν)1)+u2(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϰ1,Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1)+u3(1Θϖ(ϰ1,Ξ(ϰ,ˆϰ,˜ϰ),ν)Θϖ(ϰ1,Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1)=(u1+u3)(1Θϖ(ϰ,ϰ1,ν)1)=(u1+u3)(1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1)(u1+u3)2(1Θϖ(ϰ,ϰ1,ν)1)(u1+u3)α(1Θϖ(ϰ,ϰ1,ν)1)0 as α.

    Therefore, Θϖ(ϰ,ϰ1,ν)=1. Thus it follows that ϰ=ϰ1. Analogously, one can obtain ˆϰ=ˆϰ1 and ˜ϰ=˜ϰ1. This finishes the proof.

    Corollary 3.5. Theorem 3.4 is valid if we replace the condition (3.13) with the following condition: For ϰ,ˆϰ,˜ϰ,ϱ,ˆϱ,˜ϱΩ, νϑ,

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1u1(1Θϖ(ϰ,ϱ,ν)1)+u3(1Θϖ(ϱ,Ξ(ϰ,ˆϰ,˜ϰ),ν)Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1),

    for any u1[0,1) and u30 with u1+2u3<1.

    In order to support Theorem 3.4, the example below is considered.

    Example 3.6. Assume that all the requirements of Example 3.3 hold. Then, from (3.13), for νϑ, we get

    1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1=1Θϖ(ϰˆϰ˜ϰ21,ϱˆϱ˜ϱ21,ν)1=1ν(d((ϰˆϰ˜ϰ21,ϱˆϱ˜ϱ21)))=121ν|ϰˆϰ˜ϰϱ+ˆϱ+˜ϱ|121ν|(ϰϱ)+(ϰ(ϰˆϰ˜ϰ))+(ϱ(ϱˆϱ˜ϱ))|121ν|ϰϱ|+121ν|(ϰ(ϰˆϰ˜ϰ))+(ϱ(ϱˆϱ˜ϱ))|=121(1Θϖ(ϰ,ϱ,ν)1)+121(1Θϖ(ϰ,Ξ(ϰ,ˆϰ,˜ϰ),ν)1+1Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1).

    It is easy to prove that all the requirements of Theorem 3.4 are satisfied with u1=u2=121 and u3=0. Hence, Ξ has a unique strong TFP in Ω, which is (3,3,3).

    This part is devoted to discuss an application on Lebesgue integral type mappings to strengthen our theoretical results.

    In 2002, Branciari [36] presented the following theorem:

    Theorem 4.1. Let Ξ be a mapping defined in a complete metric space (Ω,d) satisfying

    d(Ξϰ,Ξϱ)0ω(η)dηρd(ϰ,ϱ)0ω(η)dη,

    where ρ[0,1) and ω:R+R+ is a Lebesgue integrable function which is summable, positive and suchthat ϵ0ω(η)dη>0 for each ϵ>0.Then Ξ has a unique fixed point qΩ. Moreover, for all ϰΩ, limαΞαϰ=q.

    According to the above idea, we obtain a unique TFP result in FCM space.

    Theorem 4.2. Let Ξ:Ω3Ω be a mapping defined ona complete FCMspace (Ω,Θϖ,) in which Θϖ is triangular and fulfills

    (1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϱ,ˆϱ,˜ϱ),ν)1)0ω(η)dηu1(1Θϖ(ϰ,ϱ,ν)1)0ω(η)dη+u2(1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϱ,ˆϱ,˜ϱ),ν)1)ω(η)dη, (4.1)

    where (1Z(Ξ,(ϰ,ˆϰ,˜ϰ),(ϱ,ˆϱ,˜ϱ),ν)1) is defined in Theorem 3.1, for all ϰ,ˆϰ,˜ϰ,ϱ,ˆϱ,˜ϱΩ, νϑand u1[0,1), u20 with u1+4u2<1 and ω:R+R+ is a Lebesgue integrable function which is summable, positive and suchthat eϵ>0 for each ϵ>0. Then Ξ possesses a uniqueTFP in Ω.

    Proof. Define a sequences {ϰα}, {ˆϰα} and {˜ϰα} as (3.2). Then by (4.1) and from some statements of the proof of Theorem 3.1, for νϑ, we get

    (1Θϖ(ϰα,ϰα+1,ν)1)0ω(η)dη=(1Θϖ(Ξ(ϰα1,ˆϰα1,˜ϰα1),Ξ(ϰα,ˆϰα,˜ϰα),ν)1)0ω(η)dη(1Θϖ(ϰα1,ϰα,ν)1)0ω(η)dη, (4.2)

    where =u1+2u212u2<1. Similarly, by using the same arguments, we obtain that

    (1Θϖ(ϰα1,ϰα,ν)1)0ω(η)dη(1Θϖ(ϰα2,ϰα1,ν)1)0ω(η)dη, for νϑ. (4.3)

    From (4.2), (4.3) and by induction for νϑ, we can write

    (1Θϖ(ϰα,ϰα+1,ν)1)0ω(η)dη(1Θϖ(ϰα1,ϰα,ν)1)0ω(η)dη2(1Θϖ(ϰα2,ϰα1,ν)1)0ω(η)dηα(1Θϖ(ϰ0,ϰ1,ν)1)0ω(η)dη0 as α.

    This proves that the sequence {ϰα} is an Fcc and hence

    limα(1Θϖ(ϰα,ϰα+1,ν)1)0ω(η)dη=0limα(1Θϖ(ϰα,ϰα+1,ν)1)=0, for νϑ.

    Thus

    limαΘϖ(ϰα,ϰα+1,ν)=1, for νϑ.

    Now, for >α and νϑ, we get

    (1Θϖ(ϰα,ϰ,ν)1)0ω(η)dη(1Θϖ(ϰα,ϰα+1,ν)1)0ω(η)dη+(1Θϖ(ϰα+1,ϰα+2,ν)1)0ω(η)dη++1Θϖ(ϰ1,ϰ,ν)10ω(η)dηα1Θϖ(ϰ0,ϰ1,ν)10ω(η)dη+α+11Θϖ(ϰ0,ϰ1,ν)10ω(η)dη++1(1Θϖ(ϰ0,ϰ1,ν)1)0ω(η)dη=(α+α+1++1)(1Θϖ(ϰ0,ϰ1,ν)1)0ω(η)dη=α1(1Θϖ(ϰ0,ϰ1,ν)1)ω(η)dη0 as α.

    It follows that

    limα(1Θϖ(ϰα,ϰ,ν)1)0ω(η)dη=0limα(1Θϖ(ϰα,ϰ,ν)1)=0.

    This proves that {ϰα} is a Cauchy sequence in Ω. By the same approach, we can show that {ˆϰα} and {˜ϰα} are Cauchy sequences in Ω. Since Ω is complete, there are ϰ, ˆϰ and ˜ϰ in Ω such that ϰαϰ, ˆϰαˆϰ and ˜ϰα˜ϰ as α. Therefore,

    limαΘϖ(ϰα,ϰ,ν)=1,limαΘϖ(ˆϰα,ˆϰ,ν)=1,limαΘϖ(˜ϰα,˜ϰ,ν)=1 for νϑ.

    Hence

    limαϰα+1=limαΞ(ϰα,ˆϰα,˜ϰα)=Ξ(limαϰα,limαˆϰα,limα˜ϰα)=Ξ(ϰ,ˆϰ,˜ϰ)=ϰ,limαˆϰα+1=limαΞ(ˆϰα,˜ϰα,ϰα)=Ξ(limαˆϰα,limα˜ϰα,limαϰα)=Ξ(ˆϰ,˜ϰ,ϰ)=ˆϰ,limα˜ϰα+1=limαΞ(˜ϰα,ϰα,ˆϰα)=Ξ(limα˜ϰα,limαϰα,limαˆϰα)=Ξ(˜ϰ,ϰ,ˆϰ)=˜ϰ.

    For uniqueness, suppose that (ϰ1,ˆϰ1,˜ϰ1) is another TFP of Ξ such that (ϰ1,ˆϰ1,˜ϰ1)(ϰ,ˆϰ,˜ϰ). By a similar method to the proof of Theorem 3.1 and using (4.1), for νϑ, we have

    (1Θϖ(ϰ,ϰ1,ν)1)0ω(η)dη=(1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1)0ω(η)dη(u1+2u2)(1Θϖ(ϰ,ϰ1,ν)1)0ω(η)dη=(u1+2u2)(1Θϖ(Ξ(ϰ,ˆϰ,˜ϰ),Ξ(ϰ1,ˆϰ1,˜ϰ1),ν)1)0ω(η)dη(u1+2u2)2(1Θϖ(ϰ,ϰ1,ν)1)0ω(η)dη(u1+2u2)α(1Θϖ(ϰ,ϰ1,ν)1)0ω(η)dη0 as α.

    Hence, we obtain Θϖ(ϰ,ϰ1,ν)=1, for νϑ. This implies that ϰ=ϰ1. Similarly, ˆϰ=ˆϰ1 and ˜ϰ=˜ϰ1. This finishes the required.

    In this part, we apply Theorem 3.1 to ensure the existence of a solution to the system of Volterra integral equations (see also [37,38]). Solving this system is equivalent to find a TFP of the mapping Ξ.

    Let B=(C[0,1],R) be the space of all real continuous functions and describe a supremum norm on B by

    ϰ=supl[0,1]|ϰ(l)|, for all ϰB.

    Define a distance d:B×BR by

    d(ϰ,ϱ)=supl[0,1]|ϰ(l)ϱ(l)|=ϰϱ, ϰ,ϱB.

    Since is a νnorm, we get (r,s)=rs, r,s[0,1]. Define a fuzzy metric Θϖ:B×B×(0,)[0,1] by

    Qc(ϰ,ϱ,ν)=νν+d(ϰ,ϱ), d(ϰ,ϱ)=ϰϱ, (4.4)

    for ϰ,ϱB and νϑ. Obviously, Θϖ is triangular and (B,Θϖ,) is a complete FCMspace. Consider the following system:

    {ϱ(η)=ξ1(η)+101(η,ζ,ϱ(ζ))dζ,ˆϱ(η)=ξ2(η)+102(η,ζ,ˆϱ(ζ))dζ,˜ϱ(η)=ξ3(η)+103(η,ζ,˜ϱ(ζ))dζ, (4.5)

    where ηR, and ξ1,ξ2,ξ3B.

    To study the existence of the solution to system (4.5), we consider the following:

    (h1) The functions ξi:[0,1]R and i:[0,1]×[0,1]×RR, (i=1,2,3) are continuous;

    (h2) For ϱ,ˆφ,˜κA, ˆϱ,˜φ,κG and ˜ϱ,φ,ˆκH, where A,G,HB such that

    {A(ϱ,ˆϱ,˜ϱ)(η)=101(η,ζ,(ϱ,ˆϱ,˜ϱ)(ζ))dζG(φ,ˆφ,˜φ)(η)=102(η,ζ,(φ,ˆφ,˜φ)(ζ))dζH(κ,ˆκ,˜κ)(η)=103(η,ζ,(κ,ˆκ,˜κ)(ζ))dζ, η[0,1];

    (h3) There exists γ[0,1] such that

    {(A(ϱ,ˆϱ,˜ϱ)+ξ1)(G(φ,ˆφ,˜φ)+ξ2)γ(A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ))(G(φ,ˆφ,˜φ)+ξ2)(H(κ,ˆκ,˜κ)+ξ3)γ(G(φ,ˆφ,˜φ),H(κ,ˆκ,˜κ))(A(ϱ,ˆϱ,˜ϱ)+ξ1)(H(κ,ˆκ,˜κ)+ξ3)γ(A(ϰ,ˆϰ,˜ϰ),H(κ,ˆκ,˜κ)),

    where

    (A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ))=max{AϰG,A(ϱ,ˆϱ,˜ϱ)Aϱ+G(φ,ˆφ,˜φ)Gφ+G(φ,ˆφ,˜φ)Aϱ+A(ϱ,ˆϱ,˜ϱ)Gφ}.

    Analogously, (G(φ,ˆφ,˜φ),H(κ,ˆκ,˜κ)) and (A(ϰ,ˆϰ,˜ϰ),H(κ,ˆκ,˜κ)), where

    A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ),H(κ,ˆκ,˜κ),Aξ1,Gξ2,Hξ3,Aϱ,Gφ,HκB.

    Theorem 4.3. Problem (4.5) has a unique solution, provided that theconditions (h1)(h3)  hold.

    Proof. Define an operator Ξ:B3B by

    {Ξ(ϱ,ˆϱ,˜ϱ)=A(ϱ,ˆϱ,˜ϱ)+ξ1,Ξ(φ,ˆφ,˜φ)=G(φ,ˆφ,˜φ)+ξ2,Ξ(κ,ˆκ,˜κ)=H(κ,ˆκ,˜κ)+ξ3. (4.6)

    Now, we need to assume the the following cases:

    (1) If (A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ))=AϰG, then by (4.4) and (4.5), we get

    1Θϖ(Ξ(ϱ,ˆϱ,˜ϱ),Ξ(φ,ˆφ,˜φ),ν)1=1νΞ(ϱ,ˆϱ,˜ϱ)Ξ(φ,ˆφ,˜φ)=γν(A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ))=γνAϱGφ=γ(1Θϖ(ϱ,φ,ν)1),

    for νϑ, and for ϱ,ˆφ,A, ˆϱ,˜φG and ˜ϱ,φH. Therefore Ξ fulfills all the conditions of Theorem 3.1 with u1=γ and u2=0. Thus, the problem (4.5) has a unique solution in B.

    (2) If

    (A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ))=(A(ϱ,ˆϱ,˜ϱ)Aϱ+G(φ,ˆφ,˜φ)Gφ+G(φ,ˆφ,˜φ)Aϱ+A(ϱ,ˆϱ,˜ϱ)Gφ),

    then from (4.4) and (4.5), we have

    1Θϖ(Ξ(ϱ,ˆϱ,˜ϱ),Ξ(φ,ˆφ,˜φ),ν)1=1νΞ(ϱ,ˆϱ,˜ϱ)Ξ(φ,ˆφ,˜φ)=γν(A(ϱ,ˆϱ,˜ϱ),G(φ,ˆφ,˜φ))=γν(A(ϱ,ˆϱ,˜ϱ)Aϱ+G(φ,ˆφ,˜φ)Gφ+G(φ,ˆφ,˜φ)Aϱ+A(ϱ,ˆϱ,˜ϱ)Gφ)=γ(1Θϖ(ϱ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1+1Θϖ(φ,Ξ(φ,ˆφ,˜φ),ν)1+1Θϖ(ϱ,Ξ(φ,ˆφ,˜φ),ν)1+1Θϖ(φ,Ξ(ϱ,ˆϱ,˜ϱ),ν)1)

    for νϑ, and for ϱ,ˆφ,A, ˆϱ,˜φG and ˜ϱ,φH. Therefore, Ξ satisfies all the conditions of Theorem 3.1 with u1=0 and u2=γ. Thus the system (4.5) has a unique solution in B.

    Similarly, we can finish the proof if we consider (G(φ,ˆφ,˜φ),H(κ,ˆκ,˜κ)) and (A(ϰ,ˆϰ,˜ϰ),H(κ,ˆκ,˜κ)) under the same cases (1) and (2).

    The authors express many thanks to the Editor-in-Chief, handling editor, and the reviewers for their outstanding comments that improve our paper.

    The authors declare that they have no competing interests concerning the publication of this article.



    [1] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. Theor., 74 (2011), 4889–4897. http://dx.doi.org/10.1016/j.na.2011.03.032 doi: 10.1016/j.na.2011.03.032
    [2] M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 5929–5936. http://dx.doi.org/10.1016/j.amc.2011.11.049 doi: 10.1016/j.amc.2011.11.049
    [3] T. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor., 65 (2006), 1379–1393. http://dx.doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [4] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. http://dx.doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [5] L. V. Kantorovich, The method of successive approximations for functional equations, Acta Math., 71 (1939), 63–97. http://dx.doi.org/10.1007/BF02547750 doi: 10.1007/BF02547750
    [6] J. Schroder, Das Iterationsverfahren bei allgemeinerem Abstandsbegriff, Math. Z., 66 (1956), 111–116. http://dx.doi.org/10.1007/BF01186599 doi: 10.1007/BF01186599
    [7] P. P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math., 48 (1997), 825–859.
    [8] I. A. Rus, A. Petrusel, G. Petrusel, Fixed point theory, Cluj-Napoca: Cluj University Press, 2008.
    [9] S. Rezapour, R. Hamlbarani, Some notes on the paper: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345 (2008), 719–724. http://dx.doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049
    [10] A. Amini-Harandi, M. Fakhar, Fixed point theory in cone metric spaces obtained via the scalarization method, Comput. Math. Appl., 59 (2010), 3529–3534. http://dx.doi.org/10.1016/j.camwa.2010.03.046 doi: 10.1016/j.camwa.2010.03.046
    [11] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
    [12] D. Dubois, H. Prade, Fuzzy sets and systems, New York: Academic Press, 1988.
    [13] P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Kluwer Acad. Press, 2000.
    [14] G. J. Klir, T. A. Folder, Fuzzy sets, uncertainty and information, Englewood Cliffs: Prentice Hall, 1988.
    [15] M. Mares, Computations over fuzzy quantities, Boca Raton: CRC–Press, 1994.
    [16] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [17] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. http://dx.doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [18] T. Oner, M. B. Kandemire, B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 610–616. http://dx.doi.org/10.22436/jnsa.008.05.13
    [19] S. U. Rehman, H. Aydi, Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to Fredholm integral equations, J. Funct. Space., 2021 (2021), 5527864. http://dx.doi.org/10.1155/2021/5527864 doi: 10.1155/2021/5527864
    [20] T. Oner, On some results in fuzzy cone metric spaces, International Journal of Advanced Computational Engineering and Networking, 4 (2016), 37–39.
    [21] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. http://dx.doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
    [22] S. Jabeen, S. U. Rehman, Z. Zheng, W. Wei, Weakly compatible and quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations, Adv. Differ. Equ., 2020 (2020), 280. http://dx.doi.org/10.1186/s13662-020-02743-5 doi: 10.1186/s13662-020-02743-5
    [23] H. A. Hammad, M. De la Sen, Exciting fixed point results under a new control function with supportive application in fuzzy cone metric spaces, Mathematics, 9 (2021), 2267. http://dx.doi.org/10.3390/math9182267 doi: 10.3390/math9182267
    [24] M. T. Waheed, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, Some new coupled fixed-point findings depending on another function in fuzzy cone metric spaces with application, Math. Probl. Eng., 2021 (2021), 4144966. http://dx.doi.org/10.1155/2021/4144966 doi: 10.1155/2021/4144966
    [25] I. Aziz, I. Siraj-Ul, F. Khan, A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math., 272 (2014), 70–80. http://dx.doi.org/10.1016/j.cam.2014.04.027 doi: 10.1016/j.cam.2014.04.027
    [26] A. Doucet, A. M. Johansen, V. B. Tadić, On solving integral equations using Markov chain Monte Carlo methods, Appl. Math. Comput., 216 (2010), 2869–2880. http://dx.doi.org/10.1016/j.amc.2010.03.138 doi: 10.1016/j.amc.2010.03.138
    [27] J. R. Loh, C. Phang, A new numerical scheme for solving system of Volterra integro-differential equation, Alex. Eng. J., 57 (2018), 1117–1124. http://dx.doi.org/10.1016/j.aej.2017.01.021 doi: 10.1016/j.aej.2017.01.021
    [28] M. Higazy, S. Aggarwal, T. A. Nofal, Sawi decomposition method for Volterra integral equation with application, J. Math., 2020 (2020), 6687134. http://dx.doi.org/10.1155/2020/6687134 doi: 10.1155/2020/6687134
    [29] Y. Shi, J. Wen, J. Xiong, Backward doubly stochastic Volterra integral equations and their applications, J. Differ. Equations, 269 (2020), 6492–6528. http://dx.doi.org/10.1016/j.jde.2020.05.006 doi: 10.1016/j.jde.2020.05.006
    [30] Y. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Relat. Fields, 142 (2008), 21–77. http://dx.doi.org/10.1007/s00440-007-0098-6 doi: 10.1007/s00440-007-0098-6
    [31] J. Rashidinia, M. Zarebnia, Solution of a Volterra integral equation by the Sinc-collocation method, J. Comput. Appl. Math., 206 (2007), 801–813. http://dx.doi.org/10.1016/j.cam.2006.08.036 doi: 10.1016/j.cam.2006.08.036
    [32] E. S. Shoukralla, B. M. Ahmed, Multi-techniques method for solving Volterra integral equations of the second kind, 14th International Conference on Computer Engineering and Systems (ICCES), 2019. http://dx.doi.org/10.1109/ICCES48960.2019.9068138
    [33] Z. Hong, X. Fang, Z. Yan, H. Hao, On solving a system of Volterra integral equations with relaxed Monte Carlo method, J. Appl. Math. Phys., 4 (2016), 1315–1320. http://dx.doi.org/10.4236/jamp.2016.47140 doi: 10.4236/jamp.2016.47140
    [34] B. Chweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313–334. http://dx.doi.org/10.2140/pjm.1960.10.313
    [35] S. U. Rehman, H. X. Li, Fixed point theorems in fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 5763–5769. http://dx.doi.org/10.22436/jnsa.010.11.14 doi: 10.22436/jnsa.010.11.14
    [36] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 641824. http://dx.doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524
    [37] H. A. Hammad, H. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Funct. Space., 2021 (2021), 6613774. http://dx.doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774
    [38] H. A. Hammad, M. De la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via Fwe-Suzuki contractions in modified we-metric-like spaces, J. Funct. Space., 2021 (2021), 6128586. http://dx.doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586
  • This article has been cited by:

    1. Ateq Alsaadi, Mohamed M. A. Metwali, On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces, 2022, 7, 2473-6988, 16278, 10.3934/math.20222022889
    2. Tahair Rasham, Muhammad Nazam, Hassen Aydi, Ravi P. Agarwal, Existence of Common Fixed Points of Generalized ∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-Metric Spaces with Applications, 2022, 10, 2227-7390, 3369, 10.3390/math10183369
    3. Hasanen A. Hammad, Maryam G. Alshehri, Generalized $ \Xi $-metric-like space and new fixed point results with an application, 2023, 8, 2473-6988, 2453, 10.3934/math.2023127
    4. Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled $ M $-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838
    5. Ateq Alsaadi, Mohamed M. A. Metwali, On existence theorems for coupled systems of quadratic Hammerstein-Urysohn integral equations in Orlicz spaces, 2022, 7, 2473-6988, 16278, 10.3934/math.2022889
    6. Xingchang Li, Shiqin Tian, Ji Gao, Existence of Fixed Points for a Class of Decreasing Operators with Parameter and Applications, 2022, 2022, 2314-4629, 10.1155/2022/4861344
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2042) PDF downloads(83) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog