Research article Special Issues

On a semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $

  • Received: 28 November 2021 Revised: 15 February 2022 Accepted: 17 February 2022 Published: 28 February 2022
  • MSC : 08B15, 08B05, 16Y60, 20M07

  • We study the semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $. We prove that this variety is finitely based and prove that the lattice of subvarieties of this variety is a distributive lattice of order 2327. Moreover, we deduce this variety is hereditarily finitely based.

    Citation: Lili Wang, Aifa Wang, Peng Li. On a semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $[J]. AIMS Mathematics, 2022, 7(5): 8361-8373. doi: 10.3934/math.2022466

    Related Papers:

  • We study the semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $. We prove that this variety is finitely based and prove that the lattice of subvarieties of this variety is a distributive lattice of order 2327. Moreover, we deduce this variety is hereditarily finitely based.



    加载中


    [1] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, New York: Springer, 1981.
    [2] R. El Bashir, T. Kepka, Congruence-simple semirings, Semigroup Forum, 75 (2007), 588–608. https://doi.org/10.1007/s00233-007-0725-7 doi: 10.1007/s00233-007-0725-7
    [3] P. Gajdoš, M. Kuřil, On free semilattice-ordered semigroups satisfying $x^n\approx x$, Semigroup Forum, 80 (2010), 92–104. https://doi.org/10.1007/s00233-009-9188-3 doi: 10.1007/s00233-009-9188-3
    [4] S. Ghosh, F. Pastijn, X. Z. Zhao, Varieties generated by ordered bands Ⅰ, Order, 22 (2005), 109–128. https://doi.org/10.1007/s11083-005-9011-z doi: 10.1007/s11083-005-9011-z
    [5] J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Harlow: Longman Scientific and Technical, 1992.
    [6] K. Głazek, A guide to the literature on semirings and their applications in mathematics and information science, Dordrecht: Kluwer Academic Publishers, 2002.
    [7] J. M. Howie, Fundamentals of Semigroup Theory, London: Clarendon Press, 1995.
    [8] M. Kuřil, L. Polák, On varieties of semilattice-ordered semigroups, Semigroup Forum, 71 (2005), 27–48. https://doi.org/10.1007/s00233-004-0176-3 doi: 10.1007/s00233-004-0176-3
    [9] F. Pastijn, Varieties generated by ordered bands Ⅱ, Order, 22 (2005), 129–143. https://doi.org/10.1007/s11083-005-9013-x doi: 10.1007/s11083-005-9013-x
    [10] F. Pastijn, X. Z. Zhao, Varieties of idempotent semirings with commutative addition, Algebr. Univ., 54 (2005), 301–321. https://doi.org/10.1007/s00012-005-1947-8 doi: 10.1007/s00012-005-1947-8
    [11] M. Petrich, N. R. Reilly, Completely Regular Semigroups, New York: Wiley, 1999.
    [12] M. M. Ren, X. Z. Zhao, The variety of semilattice-ordered semigroups satisfying $x^{3}\approx x$ and $xy\approx yx$, Period Math Hung, 72 (2016), 158–170. https://doi.org/10.1007/s10998-016-0116-5 doi: 10.1007/s10998-016-0116-5
    [13] M. M. Ren, X. Z. Zhao, A. F. Wang, On the varieties of ai-semirings satisfying $x^{3}\approx x$, Algebr. Univ., 77 (2017), 395–408. https://doi.org/10.1007/s00012-017-0438-z doi: 10.1007/s00012-017-0438-z
    [14] M. M. Ren, L. L. Zeng, On a hereditarily finitely based ai-semiring variety, Soft Comput., 23 (2019), 6819–6825. https://doi.org/10.1007/s00500-018-03719-0 doi: 10.1007/s00500-018-03719-0
    [15] Y. Shao, M. M. Ren, On the varieties generated by ai-semirings of order two, Semigroup Forum, 91 (2015), 171–184. https://doi.org/10.1007/s00233-014-9667-z doi: 10.1007/s00233-014-9667-z
    [16] A. F. Wang, L. L. Wang, P. Li, On a ai-semiring variety generated by $B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}$, in press.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1589) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog