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1. Introduction

A semiring is an algebra with two associative binary operations +, -, in which + is commutative
and - distributive over + from the left and right. Such an algebra is a common generalization of both
rings and distributive lattices. It has broad applications in information science and theoretical computer
science (see [5, 6]). In this paper, we shall investigate some small-order semirings which will play a
crucial role in subsequent follows.

The semiring A with addition and multiplication table (see [12])

+]0 a 1 0 a 1
0/0 0 O 0 0 O
al0 a O a|0 1 a
110 0 1 110 a 1
The semiring B with addition and multiplication table (see [4])
+]la b c a b c
ala b c aja a a
b|b b b b|b b b
clc b ¢ cla b c

Eight 2-element semirings with addition and multiplication table (see [2])
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For any semiring S, we denote by S° the semiring obtained from S by adding an extra element 0
and where a = 0 +a = a+ 0,0 = Oa = a0 for every a € §. For any semiring S, S* will denote
the (multiplicative) left-right dual of S. In 2005, Pastijn et al. [4, 9, 10] studied the semiring variety
generated by B° and (B°)* (Denoted by Sr(2, 1)). They showed that the lattice of subvarieties of this
variety is distributive and contains 78 varieties precisely. Moreover, each of these is finitely based.
In 2016, Ren et al. [12, 13] studied the variety generated by B°, (B°)* and A° (Denoted by Sr(3, 1)).
They showed that the lattice of subvarieties of this variety is distributive and contains 179 varieties
precisely. Moreover, each of these is finitely based. From [4, 10], we have HSP(L,,R,, M,,D,) &
HSP(B°, (B°)*). So

HSP(L,, R, My, D>) S HSP(L,, Ry, M5, D,, Z,, W) G HSP(B®, (B")*, Z,, W>).

In 2016, Shao and Ren [15] studied the variety HSP(L,, R,, M>, D,,7Z,, W,) (Denoted by S¢). They
showed that the lattice of subvarieties of this variety is distributive and contains 64 varieties precisely.
Moreover, each of these is finitely based. Recently, Ren and Zeng [14] studied the variety generated
by BY, (B%)*, N,, T,. They proved that the lattice of subvarieties of this variety is a distributive lattice
of order 312 and that each of its subvarieties is finitely based. In [16], Wang, Wang and Li studied the
variety generated by B’, (B°)*, A°, N,, T,. They proved that the lattice of subvarieties of this variety is
a distributive lattice of order 716 and that each of its subvarieties is finitely based. It is easy to check

HSP(B’, (B°)", A°, N, T2) S HSP(BY, (B®)*, A, Ny, T, Z, Wy).

So semiring variety HSP(B’, (B%)*,A°, N,,T,) is a proper subvariety of the semiring variety
HSP(B’, (B%)*, A°, N,, T», Z>, W,). The main purpose of this paper is to study the variety HSP(B°, (B°)*,
A° N,, T, Z,, W,). We show that the lattice of subvarieties of this variety is a distributive lattice of or-
der 2327. Moreover, we show this variety is hereditarily finitely based.

2. Preliminaries

By a variety we mean a class of algebras of the same type that is closed under subalgebras, ho-
momorphic images and direct products (see [11]). Let W be a variety, let £(W) denote the lattice of
subvarieties of W and let Idw(X) denote the set of all identities defining W. If W can be defined by
finitely many identities, then we say that W is finitely based (see [14]). In other words, W is said to be
finitely based if there exists a finite subset  of Idw(X) such that for any p ~ g € Idw(X), p = g can be
derived from X, i.e., £  p ~ g. Otherwise, we say that W is nonfinitely based. Recall that W is said to
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be hereditarily finitely based if all members of £(W) are finitely based. If a variety W is finitely based
and £(W) is a finite lattice, then W is hereditarily finitely based (see [14]).

A semiring is called an additively idempotent semiring (ai-semiring for short) if its additive reduct
i1s a semilattice, 1.e., a commutative idempotent semigroup. It is also called a semilattice-ordered
semigroup (see [3, 8, 12]). The variety of all semirings (resp. all ai-semirings) is denoted by SR
(resp. AI). Let X denote a fixed countably infinite set of variables and X" the free semigroup on X
(see [8]). A semiring identity (SR-identity for short) is an expression of the form u =~ v, where u
and v are terms with u = u; + -+« + u, v = vy + -+ + v, where u;,v; € X*. Let k denote the set
{1,2,...,k} for a positive integer k, X be a set of identities which include the identities determining AT
(Each identity in X is called an Al-identity) and u = v be an Al-identity. It is easy to check that the
ai-semiring variety defined by u ~ v coincides with the ai-semiring variety defined by the identities
uxu+v;,v~v+u,i€k,je . Thus,in order to show that u = v is derivable from X, we only need
to show thatu ~ u +v;,v ~ v+ u;,i € k, j € { can be derived from X (see [9]).

To solve the word problem for the variety HSP(B®, (B®)*, A°, N,, T», Z,, W>), the following notions
and notations are needed. Let g be an element of X*. Then

the head of g, denoted by h(g), is the first variable occurring in g;

the rail of g, denoted by #(g), is the last variable occurring in g;

the content of g, denoted by c(g), is the set of variables occurring in g;

the length of g, denoted by |g|, is the number of variables occurring in g counting multiplicities;

the initial part of g, denoted by i(g), is the word obtained from ¢ by retaining only the first

occurrence of each variable;

e the final part of g, denoted by f(g), is the word obtained from ¢ by retaining only the last occur-
rence of each variable;

e r(g) denotes set {x € X | the number of occurrences of x in g is odd}.

By [13, Lemma 1.2], Sr(3, 1) satisfies the identity p ~ ¢ if and only if (i(p), f(p), r(p)) = (i(q), f(q),
r(q)). This result will be used later without any further notice. The basis for each one of N,, T5,7Z,, W,
can be found from [2] (See Table 1).

Table 1. Bases for Ny, 1>, Z,, Ws.

Semiring Equational basis Semiring Equational basis
N> xyzzt,x+x2zx T, xyzzt,x+x2zx2
Z x+y=z+uxy=xx+y W, X+yxz+u x> xxy=xyx

By [15, Lemma 1.1] and the Table 1, we have

Lemma 2.1. Let u = v be a nontrivial SR-identity, where u = uy +us + -+, V=vi +va+ -+,
u,v; € X", iem,jen. Then

() N2 Eu=vifand only if {u; € ullu| = 1} = {v; € v||v;| = 1};

(i) T2 Fu=vifand only if {u; € ullu;| = 2} # ¢, {vi € v|Ivi| =2 2} # ¢;

(i) Z, Fuxvifandonlyif Nx e X)u # x, v # x;

V)W Eu=vifandonlyifm=n=1,c(u;) = c(vi) orm,n > 2.

Suppose that u = u; + -+ + u,,u; € X*,i € m. Let 1 be a symbol which is not in X and Y an
arbitrary subset of | J:Z' c(uy). For any u; in u, if c(u;) C Y, put hy(u;) = 1. Otherwise, we shall denote

AIMS Mathematics Volume 7, Issue 5, 8361-8373.



8364

by hy(u;) the first variable occurring in the word obtained from u; by deleting all variables in Y. The
set {hy(u;)lu; € u} is written Hy(u). Dually, we have the notations #y(u;) and Ty(y;). In particular, if
Y = 0, then hy(u;) = h(u;) and ty(u;) = t(u;). Moreover, if c(u;) N Y # 0 for every u; in u, then we write
Dy(u) = 0. Otherwise, Dy(u) is the sum of all terms u; in u such that c(u;) N Y = 0. By [13, Lemma
2.3 and 2.11] and [4, Lemma 2.4 and its dual, Lemma 2.5 and 2.6], we have

Lemma 2.2. Let u ~ u + q be an Al-identity, where u = uy + -+ + Uy, u;,q € X",i€em. Ifu ~ u+gq
holds in Sr(3, 1), then

(1) for every Z C Ufz'ln c(u;)\c(q), there exists py in X* with r(p;) = r(q) and c¢(q) € c(p) C
U;j c(u;) such that Dz(u) =~ Dz(u) + py holds in Sr(3, 1), where Dz(u) = uy + - -+ + uy.

(ii) for every Y € Z = UZY c(up)\c(q), Hy(Dz(u)) = Hy(Dz(u) + p1) and Ty(Dz(u)) = Ty(Dz(u) +
P)-

. (3.1),(3.2), . . . . ..
Throughout this paper, u X v denotes the identity u = v can be derived from the identities
(3.1),(3.2),- - - and the identities determining SR. For other notations and terminology used in this

paper, the reader is referred to [1, 4, 7, 13, 15].
3. Equational basis of HSP(B’, (B®)*,A°, N,, T», Z,, W)

In this section, we shall show that the variety HSP(B, (B°)*, A°, N,, T», Z,, W,) is finitely based.
Indeed, we have

Theorem 3.1. The semiring variety HSP(B°, (B°)*, A°, N,, T», Z,, W>) is determined by (3.1)—(3.12),

¥y ~ xy; 3.1
xy* x xy; 3.2)
)? =~ Xy (3.3)
)~ oy (3.4)
yx o~ xyx’ 3.5)
Xyzx = xXyx°zx; 3.6)
Xy+27 X Xy+2z+ x5 3.7
Xy+7 X Xy+Z24+7°XY; (3.8)
Xy+27 & Xy+z+x2y; 3.9)
Xy+tz 2 oyt (3.10)
xX+y+zt = x+y+zt+xzty; (3.11)
X+y = x+y+y. (3.12)

Proof. From [13] and Lemma 2.1, we know that both Sr(3, 1) and HSP(N,, T,, Z,, W,) satisfy identities
(3.1)—(3.12) and so does HSP(B?, (B®)*, A°, N,, T», Z,, W>).

Next, we shall show that every identity that holds in HSP(B°, (B°)*, A°, N,, T», Z,, W,) can be de-
rived from (3.1)—(3.12) and the identities determining SR. Let u =~ v be such an identity, where
U=u+uy+-F Uy, V=yi+vp+- -+ v, u,v;€X,1<i<m,1<j<n ByLemma?2.l (iv), we
only need to consider the following two cases:
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Case 1. m = n = 1 and c(uy) = c(vy). From Sr(3,1),7>,Z, E u; =~ v, it follows that

iy, fur), 7)) = G, fO01), r(01), lua] > 2 and [vy] > 2. Hence uy © ~ 0 vy

Case 2. m,n > 2. Itis easy to verify that u ~ v and the identity (3.12) imply the identities u = u+v;,
~ v+uy; foralli,jsuchthat 1 <i < m,1 < j < n. Conversely, the latter m + n identities imply
u ~ u+v = v. Thus, to show that u = v is derivable from (3.1)—(3.12) and the identities determining
SR, we need only show that the simpler identities # ~ u +v;, v ~ v + u; for all i, j such that 1 <i <
m, 1 < j < n. Hence we need to consider the following two cases:

Case 2.1. u ~ u + g, where |g| = 1. Since N, F u ~ u + g, there exists u; = g. Thusu + q =

(3.12)
W4ug+gru +us+u;, = u +ugxu.

Case 2.2. u ~ u + g, where |g| > 2. Since u = u + g holds in 75, it follows from Lemma 2.1 (ii) that
there exists u; in u such that u; > 1. Put Z = (Ufz'{’ c(u;))\c(q). Assume that Dz(u) = u; +- - - +u;. Then
Ui;i’f c(u;) = c(q). By Lemma 2.2 (i), there exists p; € X* such that r(p;) = r(q) and c(q) C c(py) C
U= e(u;). Moreover,

<
2

u ~ u+u+Dz(u)
~ u+u+ p+Dz(u)
~ u+u;+ p, + Dz(u)+ p; (by (3.10))

X u+u+p+Dzu)+ p? + pfu%u% “e- ui (by (3.7))

Write p = piuiu; - - - u;. Thus c(p) = c(q), r(p) = r(g) and we have derived the identity
u=u+p. (3.13)
Due to |p| > 1, it follows that (3.4) implies the identity
P~ p. (3.14)

Suppose that i(q) = x;x;---x,. We shall show by induction on j that for every 1 < j < £, u =
u+ xjx3 - -+ x2p is derivable from (3.1)~(3.11) and the identities defining SR.

From Lemma 2.1 (ii), there exists u;, in Dz(u) with c(u;) € c(g) such that h(u;) = h(g) = x;.
Furthermore,

u ~ u+tu, +p (by (3.13))
X utu,+p+ uip (by (3.8))
~ utu, +p+ x%u,-z]p (by (3.1))
X u+tu,+p+ x%uizlp + x%pzuiz[_p (by (3.9))
N u+u, +p+xup+xp. (by (3.6),(3.14))
Therefore
U= u+x%p. (3.15)

Assume that for some 1 < j < ¢,

wx Ut R (3.16)
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is derivable from (3.1-3.12) and the identities defining SR. By Lemma 2.1 (ii), there exists u; in Dz(u)
with c(u;) C c(q) such that u; = u; x;u;, and c(u;,) C {x1, X2, ..., x;-1}. It follows that

u = u+u+p

~ u+u,-+p+u2p (by (3.8))
~ u+u,+p+u2 2 lzzp (by (3.3))
X u+u,+p+u2 2 122p+u121 5p2u122p (by (3.9))
~ 2 2 2
X utu+p+oupxu,p+ u,1 ,p (by (3.6),(3.14))
Consequently
u = u+ul1 ]p (3.17)
Moreover, we have
u ~ u +xfx%~- ] D+ u,] ]p (by (3.16),(3.17))
A u+xfx§~- J 1p+u,] jp+x%x§- X 1(”” ]p) p (by (3.9))
~ U+ xfx% ‘.- j P+ u,] jp + x%x% e ?_1xjp. (by (3.3),(3.6),(3.14)))
Hence u ~ u + x{x3 - - x;_, x7p. Using induction we have
u=u+i*(q)p. (3.18)
Dually,
u=~u+ pr(q). (3.19)
Thus
u ~ u+p+idqQp+pfig (by (3.13),(3.18),(3.19))
~ u+p+id@p+pfig)+i@pppfig)  (by 3.11)
~ u+p+iqp+pfie) +i@pfi9 (by (3.14))
~ u+p+i@p+pfig+aq. (by (3.1)~(3.6))
It follows that u ~ u + q. O

4. The lattice L(HSP(B, (B°)*, A%, N>, T», Z>, W>))

In this section we characterize the lattice L(HSP(B, (B%)*, A%, N,, T»,Z,,W,)). Throughout this
section, #(x,...,x,) denotes the term r which contains no other variables than x,...,x, (but not
necessarily all of them). Let S € HSP(B’, (B°)*,A°, N,,T»,Z,,W,) and let E*(S) denote the set
{a € S |a+ a = a}, where any element of E*(S) is said to be an additive idempotent of (S, +). Notice
that HSP(B?, (B*)*, A°, N,, T», Z,, W,) satisfies the identities

x+)+(x+y) =~ (x+x)+0O+Yy), “4.1)
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xy+xy = (x+x)(y+y). 4.2)

By (4.1) and (4.2), it is easy to verify that E*(S) = {a + a|a € S} forms a subsemiring of S. To char-
acterize the lattice L(HSP(B’, (B®)*, A°, N,, T», Z,, W>)), we need to consider the following mapping

¢ : LHHSPB’, (B, A°, N>, T», Z,, W,)) — LHASP(B’, (B°)*, A°, N,, T»)),

4.3
W — W N HSP(B, (B°)*, A°, N,, T). (4.3)

It is easy to prove that (W) = {E*(S)|S € W} for each member W of L(HSP(B°, (B°)*,A°, N, T,
Z,,W,)). If W is the subvariety of HSP(B’, (B)*, A°, N,, T,) determined by the identities

ui(xil’ RRR] xi,,) ~ vi(xi17 D] xin)vi € ]_Ca
then W denotes the subvariety of HSP(B?, (B°)*, A, N», T», Z,, W) determined by the identities
wi(xi, + XX, + X)) = vilxg, + Xip, .., X, X)), 1 €KL “4.4)

Lemma 4.1. [16] The ai-semiring variety HSP(B?, (B®)*, A°, N>, T,) is determined by the identities
(3.1)—(3.11) and LHSP(B’, (B%)*, A°, N,, T)) is a distributive lattice of order 716.

Lemma 4.2. Let W be a member of LIHSP(B®, (B%)*, A°, N, T,)). Then, W = W v HSP(Z,, ).

Proof. Since W satisfies the identities (4.4), it follows that W is a subvariety of W. Both Z, and W,
are members of W and so W V HSP(Z,, W) C W. To show the converse inclusion, it suffices to show
that every identity that is satisfied by W v HSP(Z,, W,) can be derived by the identities holding in
HSP(B’, (B%)*,A°, N,, T,,Z,, W,) and

wi(xi, + Xips oo, X, X5 R Vi(X, F X, X, X)), 1 EK,

if W is the subvariety of L(HSP(B’, (B°)*, A%, N,, T»)) determined by u;(x;,...,%;) = vi(Xi,...,X; ),
i € k. Let u = v be such an identity, where u = u; +up + - + thy, V=i + v+ - + v, u;,v; € X', 1 <
i<m,1 < j<n. ByLemma 2.1 (8), we only need to consider the following two cases.

Case 1. m,n > 2. By identity (3.12), HSP(B?, (B°)*, A°, N,, T», Z,, W>) satisfies the identities

u+u = u, 4.5
VAV X W (4.6)

Since u# ~ v holds in HSP(B®, (B®)*, A°, N,, T,), we have that it is derivable from the collection X of

u; ~ v;,i € k and the identities determining HSP(B°, (B®)*, A°, N,, T,). From [1, Exercise 11.14.11], it
follows that there exist #;,1,...,% € P¢(X") such that

o [ =Uly=V
e Foranyi=1,2,...,0—1, there exist p;, g;, 1 € Py(X™) (where p;, g; and r; may be empty words),
a semiring substitution ¢; and an identity u; ~ v; € X such that

L = szDz(W )QI + Fiy vt Pz‘/’z(sz)% + 1,
where eitherw; = ul, s; = viorw; = vi, s; = u..
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Let X’ denote the set {u + u ~ v+ v|iu = v € X}. Forany i = 1,2,...,¢ — 1, we shall show that
ti +t; ® tiy) + tiy; is derivable from ¥’ and the identities holding in HSP(B?, (B°)*, A°, N,, T», Z,, W,).
Indeed, we have

i+t = pipiwiq: + ri+ pipi(wigqi + i
~  pipiwiqi + pipiwiq: + 1i + 1
~ pilpi(wi +w))qi +ri +1;
pilgi(si+ s))qi +ri +1;
(since w;+w; ~ s;+ s, €X' ors;+ s,  w;+w; € X))
Pipi(s1)qi + pipi(si)qi + ri + 1
~  pipi(siqi + ri + pipi(si)qi + 1
= liy1 + 1y

X

&

Further,
utu=H+tHH~H+bh=---=tp+tp=v+v.

This implies the identity

U+UV+V. 4.7)
We now have
(4.6) @7 (4.6)
U = u+u ~ v+v = v 4.8)

Case2. m = n = 1and c(u) = c(v). Since Z, F u; = vy, uy # x,v; # x, for every x € X.
Since u#; ~ v; holds in HSP(B?, (B%)*, A°, N,, T,), we have that it is derivable from the collection
of u; ~ v;,i € k and the identities defining HSP(B®, (B°)*, A%, N,, T,). From [1, Exercise I1.14.11], it
follows that there exist #;,1,...,% € P¢(X") such that

oI =u,ltr=vy;

e Forany i = 1,2,...,¢ — 1, there exist p;,q; € Py(X") (where p; and ¢; may be empty words), a

semiring substitution ¢; and an identity u; ~ v; € X (where u; and v, are words) such that

ti = pigiwWqi, tis1 = pigi(5)qi,
where eitherw; = u}, s; = viorw; = v}, s; = u;.
By Lemma 4.1, we have that u; ~ v, can be derived from (3.1)—(3.6), so, by Theorem 3.1, it can

be derived from monomial identities holding in HSP(B°, (B°)*, A°, N,, T», Z,, W,). This completes the
proof. O

Lemma 4.3. The following equality holds

LHSP(B, (B")', A°, No, T, 25, W) = g (W, W]. (4.9)
We LHSP(B,(BY)*,A",N2,T»))

There are 716 intervals in LHSP(B®, (B%)*,A°, N,,T»,Z,, W>)), and each interval is a congruence
class of the kernel of the complete epimorphism ¢ in (4.3).
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Proof. Firstly, we shall show that equality (4.9) holds. It is easy to see that

LHSP(B, (B")', A%, Ny, T3, 2, W) = g ¢ (W),
We L(HSP(BY,(B%)*,A0,N,,T>))

So it suffices to show that
¢ (W) = [W, W], (4.10)

for each member W of L(HSP(B, (B°)*, A%, N,, T,)). If W, is a member of [W, W], then it is routine to
verify that W C {E*(S)|S € W} C W. This implies that {E*(S)|S € W;} = W and so p(W;) = W
Hence, W, is a member of ¢~ !(W) and so [W, W] C ¢ '(W). Conversely, if W, is a member of
¢ (W), then W = o(W,) = {E*(S)|S € W,} and so ¢~' (W) C [W, W]. This shows that (4.9) holds.

From Lemma 4.1, we know that L(HSP(B®, (B®)*, A°, N,, T»)) is a lattice of order 716. So there are
716 intervals in L(HSP(B?, (B°)*, A%, N,, T»,Z,, W,)). Next, we show that ¢ a complete epimorphism.
On one hand, it is easy to see that ¢ is a complete A-epimorphism. On the other hand, let (W;),c; be
a family of members of L(HSP(B’, (B°)*,A°, N,, T,,Z,, W5)). Then, by (4.3), we have that o(W,;) C
W; C QDT\VZ-) for each i € I. Further,

\JeW € \/W, € \/aW)) < \/eW).

iel iel iel iel

This implies that go(\/W,) = V@(W;). Thus, ¢ is a complete V-homomorphism and so ¢ is a complete
i€l
V-epimorphism. By (4 10), we deduce that each interval in (4.3) is a congruence class of the kernel of

the complete epimorphism . O

In order to characterize the lattice LHSPB, (B%)*, A, N,,T,,Z,, W>)), by Lemma 4.3, we only
need to describe the interval [W, W] for each member W of L(HSP(B’, (B%)*, A%, N,, T»)). Next, we
have

Lelllma 4.4. Let W be a member of LIHSP(B?, (B°)*, A°, N,, T»)). Then, WVHSP(Z,) is the subvariety
of W determined by the identity

P S 4.11)

Proof. It is easy to see that both, W and HSP(Z,) satisfy the identity (4.11) and so does W VvV HSP(Z,).
In the following we prove that every identity that is satisfied by W vV HSP(Z,) is derivable from (4.11)
and the identities holding in W. Let u ~ v be such an identity, where u = uy + uy + -+ + Uy, v =
Vit vt v, u,v; € XN, 1 <i<m,1 < j < n. We only need to consider the following cases.

Case 1. m = n = 1. Since Z, satisfies u; =~ vy, it follows that |u;| # 1 and |v{| # 1. By Lemma 4.2,
W satisfies the identity u +ul ~ v +vi. Hence u, @ ul 4 R TR R vi % VI

Case 2. m = 1, n > 2. Since Z, satisfies u; ~ v, it follows that |uy| # 1. By Lemma 4.2, W satisfies
the identity u} + u7 ~ v + v. Hence u, & uw @ w+uw v+ G,

Case 3. m > 2, n = 1. Similar to Case 2. o

Case 4. m,n > 2. By Lemma 4.2, W satisfies the identity u + u ~ v+v. Henceu = u+u =

(3.11)
vV+v = W O
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Lemma 4.5. Let W be a member of L(Sr(3, 1)). Then WV HSP(W,) is the subvariety of W determined
by the identities

¥ o~ x (4.12)

Proof. 1t is easy to see that both, W and HSP(W,) satisfy the identity (4.12) and so does W vV HSP(W,).
So it suffices to show that every identity that is satisfied by W v HSP(W,) is derivable from (4.12)

and the identities holding in W. Let u ~ v be such an identity, where u = u; + up + -+ + u,, v =

VitV -+ v, u,v; € XT,1 <i<m,1 < j<n ByLemma4.2, W satisfies the identity u® ~ V7.

4.12) “.12)
Hence,u ~ >~V % v. O

Lemma 4.6. Let W be a member of LHSP(B’, (B%)",A°,N,,T,)). Then the interval [W, W] of
LMHASP(B’, (B%)*,A°, N,, T», Z,, W,)) is given in Figure 1.

W v HSP(Z,) W v HSP(W,)

W

Case.1 Nz, Tz ¢ W

W v HSP(Z,)

W

Case2 N,eWorT, e W

Figure 1. The interval [W, W].

Proof. Suppose that W, is a member of [W, W] such that W, # W and W, # W. Then, there exists a
nontrivial identity u = v holding in W, such that it is not satisfied by W. Also, we have that W, does
not satisfy the identity x + x ~ x. By Lemma 4.2, we only need to consider the following two cases.

Case 1. HSP(Z,) F u =~ v, HSP(W,) £ u ~ v. Then, u ~ v satisfies one of the following three
cases:

AIMS Mathematics Volume 7, Issue 5, 8361-8373.
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em=n=1,clu) #clvy), luj| # 1 and |v{| # 1;
e m=1,n>1and|u| # 1;
e m>1,n=1and|v|# 1.

It is easy to see that, in each of the above cases, u ~ v can imply the identity x> ~ x* + x>. By Lemma
4.4, we have that W, is a subvariety of W v HSP(Z,). On the other hand, since W; E x> ~ x> + x*
and W, }£ x + x = x, it follows that Z, is a member of W, and so W vV HSP(Z,) is a subvariety of W;.
Thus, W, = W v HSP(Z,).

Case 2. HSP(Z,) £ u =~ v, HSP(W,) E u = v. Then, u ~ v satisfies one of the following two cases:

em=n=1,c(u) =c(vy) and |uy| = 1;
em=n=1,c(u;)) =c(vy)and |v;| = 1.

If N,,T, ¢ W, then, in each of the above cases, u ~ v can imply the identity x ~ x*. By Lemma
4.5, W, is a subvariety of W vV HSP(W,). On the other hand, since W,  x = X and W, ¥ x =~ x + x,
it follows that W, is a member of W, and so W v HSP(W,) is a subvariety of W;. Thus, W, =
W v HSP(W,).

If N, € W, then, by Lemma 2.1 (i), |u;| = |v{| = 1, a contradiction. Thus, V; = V.

—

If T, € W, then, by Lemma 2.1 (i1), |u;| > 2, |v{| > 2, a contradiction. Thus, V; = V. O

By Lemma 4.3 and 4.6, we can show that the lattice L(HSP(B?, (B°)*, A°, N,, T», Z,, W,)) of subva-
rieties of the variety HSP(BY, (B®)*, A°, N>, T», Z,, W>) contains 2327 elements. In fact, we have

Theorem 4.7. LHSP(B’, (B%)*,A°, N,, T,,Z,, W,)) is a distributive lattice of order 2327.

Proof. We recall from [16] that Sr(3, 1) V T, [Sr(3, 1) V N,] contains 358 subvarieties since Sr(3, 1)
contains 179 subvarieties. By Lemma 4.3 and 4.6, we can show that L(HSP(B®, (B°)*,A°, N>, T, Z,,
W,)) has exactly 2327 (where 2327 = 179 x4 + 358 X 3 X 2 — 179 x 3) elements. Suppose that W, W,
and W5 are members of L(HSP(B®, (B°)*, A%, N,, T,,Z,, W,)) such that W, vV W, = W, v W5 and
W, AW, =W, A W;. Then, by Lemma 4.3

P(W1) V o(W3) = o(W1) V o(W3)
and

P(W1) A o(W2) = o(W1) A o(W3).
Since LHSP(B’, (B%)*, A", N,, T») is distributive, it follows that o(W,) = ¢(Ws). Write W for
©(W>). Then both W,, W3 are members of [W, W]. Suppose that W, # Wj. Then, by Lemma 4.6,
W, vW, =W, vVW;and W, A W, = W; A W; can not hold at the same time. This implies that
W, = W3. O

By Theorem 4.1, 4.7 and [14, Corollary 1.2], we now immediately deduce

Corollary 4.8. HSP(BY, (B®)*, A°, N>, T», Z,, W>) is hereditarily finitely based.
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5. Conclusions

This article considers a semiring variety generated by B°, (B®)*, A°, N,, T», Z,, W,. The finite basis
problem for semirings is an interesting developing topic, with plenty of evidence of a high level of com-
plexity along the lines of the more well-developed area of semigroup varieties. This article is primarily
a contribution toward the property of being hereditarily finite based, meaning that all subvarieties are
finitely based. This property is of course useful because it guarantees the finite basis property of a large
number of examples.
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