Research article

The discrete power-Ailamujia distribution: properties, inference, and applications

  • Received: 12 January 2022 Revised: 07 February 2022 Accepted: 22 February 2022 Published: 28 February 2022
  • MSC : 60E05, 62E10, 62F10, 62N05, 62P10

  • In this article, a new two-parameter discrete power-Ailamujia (DsPA) distribution is derived using the survival discretization technique. Some key distributional properties and reliability measures are explored in closed forms, such as probability generating function, first four moments and mean residual life. The DsPA parameters are estimated using the maximum likelihood approach. The performance of this estimation method is assessed via a simulation study. The flexibility of the DsPA distribution is shown using three count datasets. The DsPA distribution provides a better fit than some recent discrete models such as the discrete Burr-Ⅻ, uniform Poisson–Ailamujia, Poisson, discrete-Pareto, discrete-Rayleigh, discrete inverse-Rayleigh, and discrete Burr–Hutke distributions.

    Citation: Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify. The discrete power-Ailamujia distribution: properties, inference, and applications[J]. AIMS Mathematics, 2022, 7(5): 8344-8360. doi: 10.3934/math.2022465

    Related Papers:

    [1] Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Maryam Mohiuddin, Omar Meqdadi . Statistical inference for the Power Rayleigh distribution based on adaptive progressive Type-II censored data. AIMS Mathematics, 2023, 8(10): 22553-22576. doi: 10.3934/math.20231149
    [2] M. G. M. Ghazal . Modified Chen distribution: Properties, estimation, and applications in reliability analysis. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662
    [3] Azam Zaka, Ahmad Saeed Akhter, Riffat Jabeen . The new reflected power function distribution: Theory, simulation & application. AIMS Mathematics, 2020, 5(5): 5031-5054. doi: 10.3934/math.2020323
    [4] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
    [5] Fiaz Ahmad Bhatti, G. G. Hamedani, Mashail M. Al Sobhi, Mustafa Ç. Korkmaz . On the Burr XII-Power Cauchy distribution: Properties and applications. AIMS Mathematics, 2021, 6(7): 7070-7092. doi: 10.3934/math.2021415
    [6] Ekramy A. Hussein, Hassan M. Aljohani, Ahmed Z. Afify . The extended Weibull–Fréchet distribution: properties, inference, and applications in medicine and engineering. AIMS Mathematics, 2022, 7(1): 225-246. doi: 10.3934/math.2022014
    [7] Hisham Mahran, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications. AIMS Mathematics, 2024, 9(5): 11910-11940. doi: 10.3934/math.2024582
    [8] M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857
    [9] Haidy A. Newer, Mostafa M. Mohie El-Din, Hend S. Ali, Isra Al-Shbeil, Walid Emam . Statistical inference for the Nadarajah-Haghighi distribution based on ranked set sampling with applications. AIMS Mathematics, 2023, 8(9): 21572-21590. doi: 10.3934/math.20231099
    [10] Alaa M. Abd El-Latif, Hanan H. Sakr, Mohamed Said Mohamed . Fractional generalized cumulative residual entropy: properties, testing uniformity, and applications to Euro Area daily smoker data. AIMS Mathematics, 2024, 9(7): 18064-18082. doi: 10.3934/math.2024881
  • In this article, a new two-parameter discrete power-Ailamujia (DsPA) distribution is derived using the survival discretization technique. Some key distributional properties and reliability measures are explored in closed forms, such as probability generating function, first four moments and mean residual life. The DsPA parameters are estimated using the maximum likelihood approach. The performance of this estimation method is assessed via a simulation study. The flexibility of the DsPA distribution is shown using three count datasets. The DsPA distribution provides a better fit than some recent discrete models such as the discrete Burr-Ⅻ, uniform Poisson–Ailamujia, Poisson, discrete-Pareto, discrete-Rayleigh, discrete inverse-Rayleigh, and discrete Burr–Hutke distributions.



    In numerous practical situations, the datasets are measured in the number of cycles, runs, and/or shocks the device sustains before its failure. For example, the number of voltage fluctuations, the lifetime of a discrete random variable (rv), and frequency of a device switched on/off, the life of a weapon is measured by the number of rounds fired before failure, and the number of completed cycles measures the life of the equipment. Further, the number of patients, number of deaths due to a disease/virus, and number of days a patient stays in a hospital ward. Various discrete probability models can be adopted to analyze such types of datasets.

    The well-known traditional discrete probability models, including the negative binomial, geometric, and Poisson distributions have limitations to use due to their specific behavior such as the Poisson distribution that performs better with datasets having dispersion equal to average; the NB distribution is applicable for over-dispersed datasets. The real-life datasets may be over-dispersed or under-dispersed, so there is always a clear need for flexible discrete distributions to have a good resolution.

    Several discretized forms of continuous distributions have been derived to model different count datasets in the last few decades. The most notable discretization approach in the literature is the survival discretizing approach which has gained much attention.

    Let rv X follows a continuous distribution with survival function (sf) S(x). Using the survival discretization approach introduced by Kemp (2004), the probability mass function (pmf) of a discrete rv follows as

    p(x)=P(X=x)=S(x)S(x+1),x=0,1,2,3, (1)

    The survival discretization approach has been adopted to develop many discrete models. For example, the discrete normal [1], discrete Rayleigh [2], discrete half-normal [3], discrete Burr and discrete Pareto [4], discrete inverse-Weibull [5], new generalization of the geometric [6], discrete Lindley [7], generalized exponential type Ⅱ [8], discrete inverse-Rayleigh [9], two-parameter discrete Lindley [10], discrete log-logistic [11], discrete extended Weibull [12], exponentiated discrete-Lindley [13], discrete Burr-Hutke [14], discrete Marshall-Olkin Weibull [15], natural discrete-Lindley [16], discrete Bilal [17], discrete inverted Topp-Leone [18], uniform Poisson–Ailamujia [19], exponentiated discrete Lindley [20], discrete exponentiated Burr–Hatke [21], discrete Ramos-Louzada [22] and [23], and discrete type-Ⅱ half-logistic exponential [24].

    The main goal of the present study is to introduce a new discrete distribution to model over-dispersed as well as under-dispersed datasets. The proposed distribution is called the discrete power-Ailamujia (DsPA) distribution. The mathematical properties of the DsPA distribution are derived and its parameters are estimated using the maximum likelihood method. Three real count datasets are fitted using the DsPA model and other competing discrete distributions. The DsPA distribution provides a better fit to the three datasets than some well-known discrete models according to the results of the simulation.

    The paper is organized in the following sections. Section 2 is devoted to the derivation of the new DsPA distribution. Its mathematical properties are explored in Section 3. Section 4 is devoted to estimating the DsPA parameters and providing a comprehensive simulation study. The usefulness of the DsPA distribution is addressed in Section 5. Finally, we conclude the study in Section 6.

    Jamal et al. [25] proposed a new continuous lifetime distribution called the power-Ailamujia distribution. Its probability density function and sf can be expressed as

    f(x)=θ2βx2β1eθxβ,x0,θ,β>0 (2)

    and

    S(x)=(1+θxβ)eθxβ,x0,θ,β>0, (3)

    respectively.

    Applying the survival discretization approach in (1), the rv X is said to have the DsPA distribution with parameters 0<λ<1 and β>0, if its sf takes the form

    S(x;λ,β)=λ(x+1)β[1(x+1)βlnλ],xN0, (4)

    where λ=eθ and N0={0,1,2,,w} for 0<w<.

    The corresponding cumulative distribution function (cdf) and pmf can be expressed as

    F(x;λ,β)=1λ(x+1)β[1(x+1)βlnλ],xN0 (5)

    and

    Px(x;λ)=λxβ[1xβlnλ]λ(x+1)β[1(x+1)βlnλ],xN0. (6)

    Plots of the DsPA pmf, for various values of the parameters λ and β, are presented in Figure 1.

    Figure 1.  Shapes of the DsPA pmf for some values of λ and β.

    The hazard rate function (hrf) of the DsPA distribution can be expressed as

    h(x;λ)=p(x)S(x)=λxβ[1xβlnλ]λ(x+1)β[1(x+1)βlnλ]1,xN0 (7)

    where h(x;λ)=P(x)S(x). Figure 2 shows the DsPA hrf plots for different values of λ and β.

    Figure 2.  Shapes of the DsPA hrf for some values of λ and β.

    The quantile function of the DsPA distribution reduces to

    Q(u)=1[1(x+1)βlnλ]λ(x+1)β,0<u<1,

    where x denotes the integer part of x.

    The reverse hrf (rhrf) of the DsPA distribution is defined as

    r(x)=p(x)F(x)=λxβ[1xβlnλ]λ(x+1)β[1(x+1)βlnλ]1λ(x+1)β[1(x+1)βlnλ],xN0, (8)

    where r(x)=P(x)F(x). Figure 3 shows the DsPA rhrf plots for several values of λ and β.

    Figure 3.  Possible shapes of the DsPA rhrf for several values of λ and β.

    The second failure rate of the DsPA distribution is expressed by

    r(x)=log{S(x)S(x+1)}=log{λ(x+1)β[1(x+1)βlnλ]λ(x+2)β[1(x+2)βlnλ]},xN0. (9)

    The recurrence relation of probabilities from the DsPA distribution has the form

    P(x+1)P(x)=λ(x+1)β[1(x+1)βlnλ]λ(x+2)β[1(x+2)βlnλ]λxβ[1xβlnλ]λ(x+1)β[1(x+1)βlnλ]. (10)

    Hence,

    P(x+1)=λ(x+1)β[1(x+1)βlnλ]λ(x+2)β[1(x+2)βlnλ]λxβ[1xβlnλ]λ(x+1)β[1(x+1)βlnλ]P(x).

    In this section, we studied some mathematical properties of the DsPA distribution. In this section, we studied some mathematical properties of the DsPA distribution.

    The probability generating function (pgf) of the DsPA distribution is given as follows

    Gx(z)=1+(z1)x=1zx1(1xβlnλ)λxβ, (11)

    where Gx(z)=x=0zxP(x). The moment generating function (mgf) can be obtained by replacing z with ez in Eq (11). Thus, the mgf of the DsPA distribution can be expressed as

    Mx(z)=1+(ez1)x=1(ez)x1(1xβlnλ)λxβ. (12)

    Thus, the first four moments of the DsPA distribution are

    E(X)=x=1(1xβlnλ)λxβ, (13)
    E(X2)=x=1(2x1)(1xβlnλ)λxβ,
    E(X3)=x=1(3x23x+1)(1xβlnλ)λxβ

    and

    E(X4)=x=1(4x36x2+4x1)(1xβlnλ)λxβ.

    Using the above moments, the variance (σ2), coefficient of skewness (CS), and coefficient of kurtosis (CK) can be presented in closed-form expressions. Further, another classical concept, called dispersion index (DI). The DI is defined as a variance to mean ratio. If the DI value is less than 1, then the model is suitable for under-dispersed datasets. Conversely, if the DI is greater than 1, then it is suitable for over-dispersed datasets. Numerical values of the mean, E(X), σ2, CS, CK and DI are reported in Tables 15.

    Table 1.  Numerical values for the mean of the DsPA model.
    β λ
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    0.5 0.7603 1.8909 3.6766 6.5446 10.966 16.848 22.277 22.458 12.187
    1.0 0.3954 0.7529 1.1657 1.6848 2.3863 3.4156 5.1075 8.4629 18.452
    1.5 0.3415 0.5827 0.8221 1.0907 1.4187 1.8533 2.4910 3.5895 6.2446
    2.0 0.3313 0.5338 0.7085 0.8884 1.0967 1.3599 1.7259 2.3141 3.5954
    2.5 0.3303 0.5230 0.6698 0.8012 0.9444 1.1259 1.3763 1.7634 2.5557
    3.0 0.3303 0.5219 0.6619 0.7720 0.8721 0.9919 1.1725 1.4628 2.0209

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical values for the variance of the DsPA model.
    β λ
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    0.5 2.7920 12.243 38.665 103.06 229.88 417.28 621.34 779.36 615.37
    1.0 0.3901 0.8140 1.4378 2.4502 4.2371 7.7429 15.802 40.249 177.94
    1.5 0.2475 0.3692 0.4988 0.6724 0.9299 1.3485 2.1203 3.8858 10.421
    2.0 0.2236 0.2727 0.3017 0.3478 0.4232 0.5408 0.7369 1.1271 2.2935
    2.5 0.2213 0.2517 0.2384 0.2287 0.2486 0.3033 0.3864 0.5260 0.8911
    3.0 0.2212 0.2496 0.2252 0.1869 0.1626 0.1789 0.2448 0.3256 0.4729

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical values for the skewness of the DsPA model.
    β λ
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    0.5 4.6187 4.3533 3.9822 3.2831 2.4657 1.7555 1.2590 1.1461 2.0439
    1.0 1.6228 1.4038 1.3664 1.3697 1.3821 1.3943 1.4037 1.4099 1.3511
    1.5 0.9461 0.5856 0.5417 0.5744 0.6191 0.6586 0.6895 0.7124 0.7285
    2.0 0.7459 0.1163 -0.0092 0.1018 0.2223 0.2912 0.3312 0.3598 0.3836
    2.5 0.7226 -0.0655 -0.4988 -0.4984 -0.1012 0.1683 0.1697 0.1591 0.1742
    3.0 0.7218 -0.0869 -0.6648 -1.0922 -0.9663 -0.0481 0.3705 0.0738 0.0476

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical values for the kurtosis of the DsPA model.
    β λ
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    0.5 41.471 36.784 28.534 18.030 10.188 5.7950 3.7130 3.1485 5.9942
    1.0 5.9572 5.6739 5.7391 5.8240 5.8909 5.9380 5.9690 5.9875 5.4737
    1.5 2.5630 2.7503 3.1474 3.3764 3.4912 3.5508 3.5857 3.6093 3.6262
    2.0 1.6369 1.5891 2.4907 3.0833 3.1595 3.0954 3.0599 3.0514 3.0542
    2.5 1.5246 1.0744 1.8108 3.2354 3.9993 3.4076 2.8767 2.8838 2.8977
    3.0 1.5211 1.0098 1.4967 2.7867 4.9278 5.5909 3.4605 2.4008 2.8802

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical values for the DI of the DsPA model.
    β λ
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    0.5 3.6720 6.4746 10.516 15.747 20.964 24.768 27.891 34.703 50.494
    1.0 0.9866 1.0810 1.2335 1.4543 1.7756 2.2669 3.0939 4.7559 9.6437
    1.5 0.7248 0.6337 0.6068 0.6165 0.6555 0.7276 0.8512 1.0826 1.6688
    2.0 0.6749 0.5109 0.4258 0.3915 0.3859 0.3977 0.4269 0.4870 0.6379
    2.5 0.6699 0.4813 0.3559 0.2854 0.2632 0.2694 0.2808 0.2983 0.3487
    3.0 0.6697 0.4782 0.3402 0.2422 0.1865 0.1804 0.2088 0.2226 0.2340

     | Show Table
    DownLoad: CSV

    From Tables 15, we can conclude that the mean is an increasing function of λ and a decreasing function of β. It is clear that the skewness of the DsPA distribution can be positive or negative. The DI showing increasing behavior for larger values of the parameter λ and small values of β. Further, the DsPA distribution is suitable for over-dispersed and under-dispersed data sets.

    The MRL function is a helpful reliability characteristic to model and analyze the burn-in and maintenance policies. Consider the rv X that has the cdf F(.). For a discrete rv, the MRL function is defined by

    MRL=ε(i)=E(Xi|Xi)=11F(i1,λ)wj=i+1[1F(j1,λ)],iN0,

    where N0={0,1,2,,w} and 0<w<.

    Then, the MRL of the DsPA model reduces to

    MRL=11F(i1,λ,β)wj=i+1[1F(j1,λ,β)]
    =1[1(i)βlnλ]λ(i)βwj=i+1[1(j)βlnλ]λ(j)β
    =1[1(i)βlnλ]λ(i)β[wj=i+1λ(j)βlnλwj=i+1(j)βλ(j)β].

    In this section, the parameters λ and β are estimated using the maximum likelihood (ML) method.

    Suppose x1,,xn be a random sample from the DsPA distribution with pmf (6). Then the log-likelihood function takes the form

    L=1[1(i)βlnλ]λ(i)βwj=i+1[1(j)βlnλ]λ(j)β. (14)

    Now, by differentiating (14) w.r.t λ and β, we can write

    Lλ=ni=1lnλ[(xi+1)2βλ(xi+1)βxi2βλxiβ]λ{[1xiβlnλ]λxiβ[1(xi+1)βlnλ]λ(xi+1)β}=0 (15)

    and

    Lβ=ni=1(lnλ)2[λ(xi+1)β(xi+1)2βln(xi+1)λxiβxi2βlnxi]{[1xiβlnλ]λxiβ[1(xi+1)βlnλ]λ(xi+1)β}=0. (16)

    The ML estimates (MLEs) of λ and β follow from the above equation. Eqs (15) and (16) can be solved using iterative procedures such as Newton-Raphson. For this purpose, we use the maxLik function of R software [26].

    In this section, we carried out a numerical simulation to access the performance of the ML estimation method. This assessment is done by generating N=10,000 samples using the qf of the DsPA model for different sample sizes n=10,20,50, and 100 and for several values of the parameters λ and β, where (λ,β)=(0.50,0.50),(0.50,2.0),(0.90,1.20),(0.90,2.0). The assessment is completed using absolute bias, mean relative errors (MREs), and mean square errors (MSEs) which are defined by

    Bias(δ)=1NNi=1|ˆδiδ|,MSE(δ)=1NNi=1(ˆδiδ)2andMRE(δ)=1NNi=1ˆδiδi,

    where δ=(λ,β).

    The simulation results for λ and β are reported in Tables 68. The bias, MSE and MRE of the parameters λ and β are computed using the R program using the ML method. For all values of λ and β, the ML estimation approach illustrates the consistency property, that is, the MSEs and MREs decrease as n increases.

    Table 6.  Simulation results of the DsPA distribution for λ=0.5 and β=0.5.
    n E(λ) E(β) Bias(λ) Bias(β) MSE(λ) MSE(β) MRE(λ) MRE(β)
    10 0.4605 0.5804 -0.0395 0.0804 0.0483 0.0333 0.0789 0.1609
    20 0.4796 0.5370 -0.0204 0.0370 0.0247 0.0111 0.0409 0.0740
    50 0.4910 0.5143 -0.0090 0.0143 0.0098 0.0033 0.0180 0.0286
    100 0.4966 0.5065 -0.0034 0.0065 0.0049 0.0015 0.0069 0.0130
    200 0.4975 0.5037 -0.0025 0.0037 0.0024 0.0007 0.0050 0.0074

     | Show Table
    DownLoad: CSV
    Table 7.  Simulation results of the DsPA distribution for λ=0.5 and β=2.0.
    n E(λ) E(β) Bias(λ) Bias(β) MSE(λ) MSE(β) MRE(λ) MRE(β)
    10 0.4654 2.3160 -0.0346 0.3160 0.0490 0.5537 0.0692 0.1580
    20 0.4809 2.1419 -0.0191 0.1419 0.0243 0.1730 0.0382 0.0709
    50 0.4905 2.0571 -0.0095 0.0571 0.0097 0.0514 0.0191 0.0286
    100 0.4970 2.0243 -0.0030 0.0243 0.0050 0.0247 0.0060 0.0122
    200 0.4984 2.0125 -0.0016 0.0125 0.0024 0.0115 0.0032 0.0062

     | Show Table
    DownLoad: CSV
    Table 8.  Simulation results of the DsPA distribution for λ=0.9 and β=1.2.
    n E(λ) E(β) Bias(λ) Bias(β) MSE(λ) MSE(β) MRE(λ) MRE(β)
    10 0.8630 1.3915 -0.0370 0.1915 0.0990 0.1973 0.0411 0.1596
    20 0.8843 1.2834 -0.0157 0.0834 0.0473 0.0630 0.0174 0.0695
    50 0.8926 1.2310 -0.0074 0.0310 0.0181 0.0190 0.0082 0.0258
    100 0.8972 1.2154 -0.0028 0.0154 0.0088 0.0086 0.0031 0.0129
    200 0.8980 1.2076 -0.0020 0.0076 0.0045 0.0043 0.0022 0.0063

     | Show Table
    DownLoad: CSV

    From Tables 68, we conclude that:

    1. The estimates of λ and β close to their true values with the increase of n for all studied cases.

    2. The MSEs for λ and β decrease with the increase of n for all studied cases.

    3. The MREs for λ and β decrease with the increase of n for all studied cases.

    Table 9.  Simulation results of the DsPA distribution for λ=0.9 and β=2.0.
    n E(λ) E(β) Bias(λ) Bias(β) MSE(λ) MSE(β) MRE(λ) MRE(β)
    10 0.8690 2.3159 -0.0310 0.3159 0.1005 0.5381 0.0344 0.1580
    20 0.8785 2.1443 -0.0215 0.1443 0.0454 0.1699 0.0239 0.0722
    50 0.8941 2.0523 -0.0059 0.0523 0.0183 0.0535 0.0065 0.0261
    100 0.8957 2.0278 -0.0043 0.0278 0.0089 0.0246 0.0048 0.0139
    200 0.8980 2.0139 -0.0020 0.0139 0.0044 0.0117 0.0022 0.0070

     | Show Table
    DownLoad: CSV

    In this section, we illustrate the importance of the newly DsPA distribution by utilizing three real-life datasets. We shall compare the fits of the DsPA distribution with the following competing discrete distributions which are reported in Table 10.

    Table 10.  The competing discrete models of the DsPA distribution with their pmfs.
    Model Abbreviation pmf
    Discrete Bur-Ⅻ DsBⅫ P(x)=λln(1+xα)λln(1+(1+x)α).
    Uniform Poisson–Ailamujia UPA P(x)=2λ(1+2λ)x1.
    Poisson Poi P(x)=eλλxx!.
    Discrete-Pareto DsPr P(x)=eλln(1+x)eλln(2+x).
    Discrete-Rayleigh DsR P(x)=ex22λ2e(x+1)22λ2.
    Discrete inverse-Rayleigh DsIR P(x)=eλ(1+x)2eλx2.
    Discrete Burr-Hutke DsBH P(x)=(1x+1λx+2)λx.

     | Show Table
    DownLoad: CSV

    The fitted distributions are compared using the negative maximum log-likelihood (-Loglik.), Akaike information criterion (AIC), Bayesian information criterion (BIC), and the p-value of Kolmogorov–Smirnov test (KS p-value).

    Dataset Ⅰ: The first dataset is about the failure times for a sample of 15 electronic components in an acceleration life test [27]. The data observations are: 1.0, 5.0, 6.0, 11.0, 12.0, 19.0, 20.0, 22.0, 23.0, 31.0, 37.0, 46.0, 54.0, 60.0 and 66.0.

    Dataset Ⅱ: The second dataset is about the number of fires in Greece from July 1, 1998 to August 31, 1998. This dataset is studied [28]. The data observations are: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 15, 15, 15, 15, 16, 20 and 43.

    Dataset Ⅲ: The third dataset consists of 48 final mathematics examination marks for slow-paced students in the Indian Institute of Technology at Kanpur. The data is analyzed by [29]. The observations are: 29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70, 44, 6, 23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19 and 31.

    The MLEs of the competing discrete models, standard errors (SEs), and goodness-of-fit measures are listed in Tables 1113 for the three datasets, respectively. For visual comparisons, the P-P (probability–probability) plots of fitted distributions are displayed in Figures 4, 6 and 8 for the analyzed datasets, respectively. Furthermore, the estimated cdf, sf, hrf of the DsPA distribution are depicted in Figures 5, 7 and 9, respectively.

    Table 11.  Findings of the competing discrete distributions to the failure times of electronic components.
    Model λ α Measures
    MLE SEs MLE SEs -Loglik. AIC BIC KS p-value
    DsBⅫ 0.9839 0.0355 20.868 46.483 75.69 155.38 156.80 0.0150
    UPA 0.0182 0.0047 - - 65.00 132.00 132.71 0.6734
    Poi 27.535 1.3548 - - 151.21 304.41 305.12 0.0180
    DsPr 0.3283 0.0848 - - 77.40 156.80 157.51 0.0097
    DsR 24.384 3.1487 - - 66.39 134.79 135.50 0.4300
    DsIR 42.021 11.243 - - 83.99 169.97 170.68 0.0000
    DsBH 0.9992 0.0076 - - 91.37 184.74 185.44 0.0000
      DsPA 0.8886 0.0674 0.8588 0.1738 64.49 131.58 132.97 0.9500

     | Show Table
    DownLoad: CSV
    Table 12.  Findings of the competing discrete distributions to the number of fires in Greece.
    Model λ α Measures
    MLE SE MLE SE -Loglik. AIC BIC KS p-value
    DsBⅫ 0.7612 0.0427 2.5026 0.4870 373.39 750.79 756.41 0.0000
    UPA 0.0926 0.0090 - - 341.14 684.28 687.09 0.0028
    Poi 5.3988 0.2095 - - 467.83 937.65 940.47 0.0000
    DsPr 0.6046 0.0546 - - 389.64 781.27 784.08 0.0000
    DsR 5.6792 0.2567 - - 385.25 772.49 775.31 0.0000
    DsIR 3.9959 0.3995 - - 412.72 827.44 830.25 0.0000
    DsBH 0.9836 0.0127 - - 407.16 816.31 819.12 0.0000
    DsPA 0.5812 0.0407 0.7709 0.0562 340.33 684.67 690.29 0.2484

     | Show Table
    DownLoad: CSV
    Table 13.  Findings of the competing discrete distributions to the the examination marks in mathematics.
    Model λ α Measures
    MLE SE MLE SE -Loglik. AIC BIC KS p-value
    DsBⅫ 0.9382 0.1926 5.1500 16.5597 247.48 498.97 502.71 0.0000
    UPA 0.0193 0.0028 - - 205.11 412.22 414.09 0.0174
    Poi 25.8950 0.7345 - - 396.59 795.18 797.05 0.0000
    DsPr 0.3225 0.0466 - - 215.18 504.36 506.23 0.0000
    DsR 22.7562 1.6427 - - 201.89 405.79 407.66 0.0460
    DsIR 177.56 26.02 - - 205.13 412.27 414.14 0.0000
    DsBH 0.9990 0.0046 - - 297.68 597.35 599.22 0.0000
    DsPA 0.9409 0.0231 1.0621 0.1113 197.44 398.88 402.62 0.8102

     | Show Table
    DownLoad: CSV
    Figure 4.  The P-P plots of the competing discrete models for dataset Ⅰ.
    Figure 5.  The fitted cdf, sf, and hrf plots for dataset Ⅰ.
    Figure 6.  The P-P plots of the competing discrete models for dataset Ⅱ.
    Figure 7.  The fitted cdf, sf, and hrf plots for dataset Ⅱ.
    Figure 8.  The P-P plots of the competing discrete models for dataset Ⅲ.
    Figure 9.  The fitted cdf, sf, and hrf plots for dataset Ⅲ.

    The findings in Tables 1113 illustrate that the DsPA distribution provides a superior fit over other competing discrete models, since it has the lowest values for all measures and the largest K-S p-value.

    In this study, a new one-parameter discrete model is proposed as a good alternative to some well-known discrete distributions. The newly introduced model is called the discrete-power-Ailamujia (DsPA) distribution. Some statistical properties of the DsPA distribution are derived. Its parameters are estimated by the maximum likelihood method. A simulation study is carried out to check the performance of the estimators. It is observed that the maximum likelihood method is efficient in estimating the DsPA parameters for large samples. Finally, three real-world datasets are analyzed to check the usefulness and applicability of the DsPA distribution. The goodness-of-fit measures and figures show that the DsPA distribution is a useful attractive alternative for competing discrete models.

    This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under Grant No. (G: 047-662-1442). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

    The authors declare no conflict of interest.



    [1] D. Roy, The discrete normal distribution, Commun. Stat-Theor M., 32 (2003), 1871‒1883. https://doi.org/10.1081/STA-120023256 doi: 10.1081/STA-120023256
    [2] D. Roy, Discrete Rayleigh Distribution, IEEF Transactions on Reliability, 53 (2004), 255‒260. https://doi.org/10.1109/TR.2004.829161 doi: 10.1109/TR.2004.829161
    [3] A. Kemp, The discrete half normal distribution, Advances in mathematical and statistical modeling, (2008), 353‒360. https://doi.org/10.1007/978-0-8176-4626-4_27 doi: 10.1007/978-0-8176-4626-4_27
    [4] H. Karishna, P. S. Pundir, Discrete burr and discrete Pareto distributions, Stat. Methodol., 6 (2009), 177‒188. https://doi.org/10.1016/j.stamet.2008.07.001 doi: 10.1016/j.stamet.2008.07.001
    [5] M. A. Jazi, C. Lai, M. H. Alamastsaz, A Discrete inverse Weibull distribution and estimation of its parameters, Stat Methodol., 7 (2010), 121‒132. https://doi.org/10.1016/j.stamet.2009.11.001 doi: 10.1016/j.stamet.2009.11.001
    [6] E. Gomez-Deniz, Another generalization of the geometric distribution, Test, 19 (2010), 399‒415. https://doi.org/10.1007/s11749-009-0169-3 doi: 10.1007/s11749-009-0169-3
    [7] E. Gomez-Deniz, E. Calderin-Ojeda, The discrete Lindley distribution: properties and application, J. Stat. Comput. Sim., 81 (2011), 1405‒1416. https://doi.org/10.1080/00949655.2010.487825 doi: 10.1080/00949655.2010.487825
    [8] V. Nekoukhou, M. H. Alamatsaz, H. Bidram, Discrete generalized exponential distribution of a second type, Statistics, 47 (2013), 876‒887. https://doi.org/10.1080/02331888.2011.633707 doi: 10.1080/02331888.2011.633707
    [9] T. Hussain, M. Ahmad, Discrete inverse Rayleigh distribution, Pak. J. Stat., 30 (2014), 203‒222.
    [10] T. Hussain, M. Aslam, M. Ahmad, A two parameter discrete Lindley distribution, Rev. Colomb. Estad., 39 (2016), 45‒61. https://doi.org/10.15446/rce.v39n1.55138 doi: 10.15446/rce.v39n1.55138
    [11] B. A. Para, T. R. Jan, Discrete version of Log-Logistic distribution and its application in genetics, International Journal of Modern Mathematical Sciences, 14 (2016), 407‒422.
    [12] J. M. Jia, Z. Z. Yan, X. Y. Peng, A new discrete extended Weibull distribution, IEEE ACCESS, 7 (2019), 175474‒175486. https://doi.org/10.1109/ACCESS.2019.2957788 doi: 10.1109/ACCESS.2019.2957788
    [13] M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two parameter exponentiated discrete Lindley distribution: properties, estimation and application, J. Appl. Stat., 47 (2020), 354‒375. https://doi.org/10.1080/02664763.2019.1638893 doi: 10.1080/02664763.2019.1638893
    [14] M. El-Morshedy, M. S. Eliwa, E. Altun, Discrete Burr-Hatke distribution with properties, estimation methods and regression model, IEEE Access, 8 (2020), 74359‒74370. https://doi.org/10.1109/ACCESS.2020.2988431 doi: 10.1109/ACCESS.2020.2988431
    [15] F. C. Opone, E. K. Izekor, I. U. Akata, F. E. U. Osagiede, A Discrete Analogue of the Continuous Marshall-Olkin Weibull Distribution with application to Count Data, Earthline Journal of Mathematical Sciences, 5 (2021), 415‒428. https://doi.org/10.34198/ejms.5221.415428 doi: 10.34198/ejms.5221.415428
    [16] A. A. Al-Babtain, A. H. N. Ahmad, A. Z. Afify, A new discrete analog of the continuous Lindley distribution, with reliability applications, Entropy, 22 (2020), 603. https://doi.org/10.3390/e22060603 doi: 10.3390/e22060603
    [17] E. Altun, M. El-Morshedy, M. S. Eliwa, A Study on discrete Bilal distribution with properties and applications on integer-valued autoregressive process, Revstat. Stat. J., 18 (2020), 70‒99.
    [18] A. S. Eldeeb, M. Ahsan-Ul-Haq, A. Babar, A discrete analog of inverted Topp-Leone distribution: properties, estimation and applications, Int. J. Anal. Appl., 19 (2021), 695‒708.
    [19] H. M. Aljohani, Y. Akdoğan, G. M. Cordeiro, A. Z. Afify, The uniform Poisson–Ailamujia distribution: actuarial measures and applications in biological science, Symmetry, 13 (2021), 1258. https://doi.org/10.3390/sym13071258 doi: 10.3390/sym13071258
    [20] M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications, J. Appl. Stat., 47 (2020), 354‒375. https://doi.org/10.1080/02664763.2019.1638893 doi: 10.1080/02664763.2019.1638893
    [21] M. El-Morshedy, H. M. Aljohani, M. S. Eliwa, M. Nassar, M. K. Shakhatreh, A. Z. Afify, The exponentiated Burr–Hatke distribution and its discrete version: reliability properties with CSALT model, inference and applications, Mathematics, 9 (2021), 2277. https://doi.org/10.3390/math9182277 doi: 10.3390/math9182277
    [22] A. Z. Afify, M. Elmorshedy, M. S. Eliwa, A new skewed discrete model: properties, inference, and applications, Pak. J. Stat. Oper. Res., 17 (2021), 799‒816. https://doi.org/10.18187/pjsor.v17i4.3781 doi: 10.18187/pjsor.v17i4.3781
    [23] A. S. Eldeeb, M. Ahsan-ul-Haq, M. S. Eliwa, A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: properties and various estimation techniques with inference, AIMS Mathematics, 7 (2022), 1726‒1741. https://doi.org/10.3934/math.2022099 doi: 10.3934/math.2022099
    [24] M. Ahsan-ul-Haq, A. Babar, S. Hashmi, A. S. Alghamdi, A. Z. Afify, The discrete type-Ⅱ half-logistic exponential distribution with applications to COVID-19 data, Pak. J. Stat. Oper. Res., 17 (2021), 921‒932. https://doi.org/10.18187/pjsor.v17i4.3772 doi: 10.18187/pjsor.v17i4.3772
    [25] F. Jamal, C. Chesneau, K. Aidi, A. Ali, Theory and application of the power Ailamujia distribution, Journal of Mathematical Modeling, 9 (2021), 391‒413.
    [26] R Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2020. Available from: https://www.R-project.org/.
    [27] J. F. Lawless, Statistical Models and Methods for Lfetime Data, Vol. 362, John Wiley & Sons, 2011.
    [28] D. Karlis, E. Xekalaki, E. A. Lipitakis, On some discrete valued time series models based on mixtures and thinning. In Proceedings of the Fifth Hellenic-European Conference on Computer Mathematics and Its Applications, (2001), 872‒877.
    [29] H. S. Bakouch, M. A. Jazi, S. Nadarajah, A new discrete distribution, Statistics, 48 (2014), 200‒240. https://doi.org/10.1080/02331888.2012.716677 doi: 10.1080/02331888.2012.716677
  • This article has been cited by:

    1. Ahmed Z. Afify, Muhammad Ahsan-ul-Haq, Hassan M. Aljohani, Abdulaziz S. Alghamdi, Ayesha Babar, Héctor W. Gómez, A new one-parameter discrete exponential distribution: Properties, inference, and applications to COVID-19 data, 2022, 34, 10183647, 102199, 10.1016/j.jksus.2022.102199
    2. Mohamed S. Eliwa, Muhammad Ahsan-ul-Haq, Amani Almohaimeed, Afrah Al-Bossly, Mahmoud El-Morshedy, Barbara Martinucci, Discrete Extension of Poisson Distribution for Overdispersed Count Data: Theory and Applications, 2023, 2023, 2314-4785, 1, 10.1155/2023/2779120
    3. Muhammad Ahsan-ul-Haq, On Poisson Moment Exponential Distribution with Applications, 2022, 2198-5804, 10.1007/s40745-022-00400-0
    4. Muhammad Ahsan-ul-Haq, Javeria Zafar, A new one-parameter discrete probability distribution with its neutrosophic extension: mathematical properties and applications, 2023, 2364-415X, 10.1007/s41060-023-00382-z
    5. Amani Alrumayh, Hazar A. Khogeer, A New Two-Parameter Discrete Distribution for Overdispersed and Asymmetric Data: Its Properties, Estimation, Regression Model, and Applications, 2023, 15, 2073-8994, 1289, 10.3390/sym15061289
    6. Refah Alotaibi, Hoda Rezk, Chanseok Park, Ahmed Elshahhat, The Discrete Exponentiated-Chen Model and Its Applications, 2023, 15, 2073-8994, 1278, 10.3390/sym15061278
    7. Hassan M. Aljohani, Muhammad Ahsan-ul-Haq, Javeria Zafar, Ehab M. Almetwally, Abdulaziz S. Alghamdi, Eslam Hussam, Abdisalam Hassan Muse, Analysis of Covid-19 data using discrete Marshall–Olkinin Length Biased Exponential: Bayesian and frequentist approach, 2023, 13, 2045-2322, 10.1038/s41598-023-39183-6
    8. Safar M. Alghamdi, Muhammad Ahsan-ul-Haq, Olayan Albalawi, Majdah Mohammed Badr, Eslam Hussam, H.E. Semary, M.A. Abdelkawy, Binomial Poisson Ailamujia model with statistical properties and application, 2024, 17, 16878507, 101096, 10.1016/j.jrras.2024.101096
    9. Muhammad Ahsan-ul-Haq, Muhammad N. S. Hussain, Ayesha Babar, Laila A. Al-Essa, Mohamed S. Eliwa, Barbara Martinucci, Analysis, Estimation, and Practical Implementations of the Discrete Power Quasi‐Xgamma Distribution, 2024, 2024, 2314-4629, 10.1155/2024/1913285
    10. Khlood Al-Harbi, Aisha Fayomi, Hanan Baaqeel, Amany Alsuraihi, A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data, 2024, 16, 2073-8994, 1123, 10.3390/sym16091123
    11. Seth Borbye, Suleman Nasiru, Kingsley Kuwubasamni Ajongba, Vladimir Mityushev, Poisson XRani Distribution: An Alternative Discrete Distribution for Overdispersed Count Data, 2024, 2024, 0161-1712, 10.1155/2024/5554949
    12. Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Ayesha Babar, A new discrete XLindley distribution: theory, actuarial measures, inference, and applications, 2024, 17, 2364-415X, 323, 10.1007/s41060-023-00395-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2309) PDF downloads(117) Cited by(12)

Figures and Tables

Figures(9)  /  Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog