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1. Introduction 

In numerous practical situations, the datasets are measured in the number of cycles, runs, and/or 

shocks the device sustains before its failure. For example, the number of voltage fluctuations, the 

lifetime of a discrete random variable (rv), and frequency of a device switched on/off, the life of a 

weapon is measured by the number of rounds fired before failure, and the number of completed 

cycles measures the life of the equipment. Further, the number of patients, number of deaths due to a 

disease/virus, and number of days a patient stays in a hospital ward. Various discrete probability 

models can be adopted to analyze such types of datasets. 

The well-known traditional discrete probability models, including the negative binomial, 

geometric, and Poisson distributions have limitations to use due to their specific behavior such as the 

Poisson distribution that performs better with datasets having dispersion equal to average; the NB 

distribution is applicable for over-dispersed datasets. The real-life datasets may be over-dispersed or 

under-dispersed, so there is always a clear need for flexible discrete distributions to have a good 

resolution. 

Several discretized forms of continuous distributions have been derived to model different count 

datasets in the last few decades. The most notable discretization approach in the literature is the 

survival discretizing approach which has gained much attention. 

Let rv 𝑋 follows a continuous distribution with survival function (sf) 𝑆 𝑥 . Using the survival 

discretization approach introduced by Kemp (2004), the probability mass function (pmf) of a discrete 

rv follows as 

𝑝 𝑥 = 𝑃 𝑋 = 𝑥 = 𝑆  𝑥 − 𝑆  𝑥 + 1 , 𝑥 = 0,1,2,3, …                                                   1  

The survival discretization approach has been adopted to develop many discrete models. For 

example, the discrete normal [1], discrete Rayleigh [2], discrete half-normal [3], discrete Burr and 

discrete Pareto [4], discrete inverse-Weibull [5], new generalization of the geometric [6], discrete 

Lindley [7], generalized exponential type II [8], discrete inverse-Rayleigh [9], two-parameter 

discrete Lindley [10], discrete log-logistic [11], discrete extended Weibull [12], exponentiated 

discrete-Lindley [13], discrete Burr-Hutke [14], discrete Marshall-Olkin Weibull [15], natural 

discrete-Lindley [16], discrete Bilal [17], discrete inverted Topp-Leone [18], uniform 

Poisson–Ailamujia [19], exponentiated discrete Lindley [20], discrete exponentiated 

Burr–Hatke [21], discrete Ramos-Louzada [22] and [23], and discrete type-II half-logistic 

exponential [24]. 

The main goal of the present study is to introduce a new discrete distribution to model 

over-dispersed as well as under-dispersed datasets. The proposed distribution is called the discrete 

power-Ailamujia (DsPA) distribution. The mathematical properties of the DsPA distribution are 

derived and its parameters are estimated using the maximum likelihood method. Three real count 

datasets are fitted using the DsPA model and other competing discrete distributions. The DsPA 

distribution provides a better fit to the three datasets than some well-known discrete models 

according to the results of the simulation. 

The paper is organized in the following sections. Section 2 is devoted to the derivation of the 

new DsPA distribution. Its mathematical properties are explored in Section 3. Section 4 is devoted to 

estimating the DsPA parameters and providing a comprehensive simulation study. The usefulness of 

the DsPA distribution is addressed in Section 5. Finally, we conclude the study in Section 6. 
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2. The DsPA distribution 

Jamal et al. [25] proposed a new continuous lifetime distribution called the power-Ailamujia 

distribution. Its probability density function and sf can be expressed as  

 

𝑓 𝑥 = 𝜃2𝛽𝑥2𝛽−1𝑒−𝜃𝑥𝛽
,        𝑥 ≥ 0, 𝜃, 𝛽 > 0                                                                                 2  

and  

𝑆 𝑥 =  1 + 𝜃𝑥𝛽 𝑒−𝜃𝑥𝛽
,      𝑥 ≥ 0, 𝜃, 𝛽 > 0,                                                                           3  

respectively.  

Applying the survival discretization approach in (1), the rv 𝑋 is said to have the DsPA 

distribution with parameters 0 < 𝜆 < 1 and 𝛽 > 0, if its sf takes the form 

𝑆 𝑥; 𝜆, 𝛽 = 𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  ,       𝑥 ∈ ℕ0,                                                     4  

where 𝜆 = 𝑒−𝜃and ℕ0 =  0, 1, 2, … , 𝑤  for 0 < 𝑤 < ∞.  

The corresponding cumulative distribution function (cdf) and pmf can be expressed as 

𝐹 𝑥; 𝜆, 𝛽 = 1 − 𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  ,       𝑥 ∈ ℕ0                                        5  

and  

𝑃𝑥 𝑥; 𝜆 = 𝜆𝑥𝛽
 1 − 𝑥𝛽  𝑙𝑛 𝜆  −  𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  ,       𝑥 ∈ ℕ0.             6  

Plots of the DsPA pmf, for various values of the parameters 𝜆 and 𝛽, are presented in Figure 1. 

 

The hazard rate function (hrf) of the DsPA distribution can be expressed as  

ℎ 𝑥; 𝜆 =  
𝑝(𝑥)

𝑆(𝑥)
=  

𝜆𝑥𝛽
 1 − 𝑥𝛽  𝑙𝑛 𝜆  

𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  
− 1,       𝑥 ∈ ℕ0                                                7  

where ℎ 𝑥; 𝜆 =
𝑃(𝑥)

𝑆(𝑥)
. Figure 2 shows the DsPA hrf plots for different values of 𝜆 and 𝛽. 

The quantile function of the DsPA distribution reduces to 

𝑄 𝑢 =  1 −  1 −  𝑥 + 1 𝛽 ln 𝜆  𝜆 𝑥+1 𝛽  , 0 < 𝑢 < 1, 

where  𝑥  denotes the integer part of 𝑥. 

The reverse hrf (rhrf) of the DsPA distribution is defined as 

𝑟∗ 𝑥 =
𝑝 𝑥 

𝐹 𝑥 
=

 𝜆𝑥𝛽
 1 − 𝑥𝛽  𝑙𝑛 𝜆 −  𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  

1 − 𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆   
,       𝑥 ∈ ℕ0,               8  

where 𝑟∗ 𝑥 =
𝑃 𝑥 

𝐹 𝑥 
. Figure 3 shows the DsPA rhrf plots for several values of 𝜆 and 𝛽. 

The second failure rate of the DsPA distribution is expressed by 

𝑟∗∗ 𝑥 = log  
𝑆 𝑥 

𝑆 𝑥 + 1 
 = log  

𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  

𝜆 𝑥+2 𝛽  1 −  𝑥 + 2 𝛽 ln 𝜆  
  ,       𝑥 ∈ ℕ0.                      9  
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Figure 1. Shapes of the DsPA pmf for some values of 𝜆 and 𝛽. 
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The recurrence relation of probabilities from the DsPA distribution has the form 

𝑃 𝑥 + 1 

𝑃 𝑥 
=  

𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽  𝑙𝑛 𝜆  −  𝜆 𝑥+2 𝛽  1 −  𝑥 + 2 𝛽 ln 𝜆  

 𝜆𝑥𝛽  1 − 𝑥𝛽  𝑙𝑛 𝜆 −  𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  
.                      10  

Hence, 

𝑃 𝑥 + 1 =
𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽  𝑙𝑛 𝜆  −  𝜆 𝑥+2 𝛽  1 −  𝑥 + 2 𝛽 ln 𝜆  

 𝜆𝑥𝛽  1 − 𝑥𝛽  𝑙𝑛 𝜆 −  𝜆 𝑥+1 𝛽  1 −  𝑥 + 1 𝛽 ln 𝜆  
𝑃 𝑥 . 

 

 

Figure 2. Shapes of the DsPA hrf for some values of 𝜆 and 𝛽.  
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Figure 3. Possible shapes of the DsPA rhrf for several values of 𝜆 and 𝛽. 

3. Some properties of the DsPA distribution 

In this section, we studied some mathematical properties of the DsPA distribution. In this 

section, we studied some mathematical properties of the DsPA distribution. 

3.1 Moments and generating functions 

The probability generating function (pgf) of the DsPA distribution is given as follows 

𝐺𝑥 𝑧 = 1 +  (𝑧 − 1)  𝑧𝑥−1

∞

𝑥=1

  1 − 𝑥𝛽  ln 𝜆  𝜆𝑥𝛽
,                                                         11  

where 𝐺𝑥 𝑧 =  𝑧𝑥∞
𝑥=0 𝑃 𝑥 . The moment generating function (mgf) can be obtained by replacing 

z with 𝑒𝑧  in Eq (11). Thus, the mgf of the DsPA distribution can be expressed as   

𝑀𝑥 𝑧 = 1 +  ( 𝑒𝑧 − 1)    𝑒𝑧 𝑥−1

∞

𝑥=1

  1 − 𝑥𝛽  ln 𝜆  𝜆𝑥𝛽
.                                          12  

Thus, the first four moments of the DsPA distribution are 

𝐸 𝑋 =   1 − 𝑥𝛽  ln 𝜆  𝜆𝑥𝛽

∞

𝑥=1

,                                                                        13  
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𝐸 𝑋2 =  (2𝑥 − 1)

∞

𝑥=1

  1 − 𝑥𝛽  ln 𝜆  𝜆𝑥𝛽
, 

𝐸 𝑋3 =   3𝑥2 − 3𝑥 + 1 

∞

𝑥=1

  1 − 𝑥𝛽  ln 𝜆  𝜆𝑥𝛽
 

and  

𝐸 𝑋4 =   4𝑥3 − 6𝑥2 + 4𝑥 − 1 

∞

𝑥=1

  1 − 𝑥𝛽  ln 𝜆  𝜆𝑥𝛽
. 

Using the above moments, the variance (𝜎2), coefficient of skewness (CS), and coefficient of 

kurtosis (CK) can be presented in closed-form expressions. Further, another classical concept, called 

dispersion index (DI). The DI is defined as a variance to mean ratio. If the DI value is less than 1, 

then the model is suitable for under-dispersed datasets. Conversely, if the DI is greater than 1, then it 

is suitable for over-dispersed datasets. Numerical values of the mean, 𝐸 𝑋 , 𝜎2, CS, CK and DI are 

reported in Tables 1‒5. 

Table 1. Numerical values for the mean of the DsPA model. 

𝜷 
𝝀 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 0.7603 1.8909 3.6766 6.5446 10.966 16.848 22.277 22.458 12.187 

1.0 0.3954 0.7529 1.1657 1.6848 2.3863 3.4156 5.1075 8.4629 18.452 

1.5 0.3415 0.5827 0.8221 1.0907 1.4187 1.8533 2.4910 3.5895 6.2446 

2.0 0.3313 0.5338 0.7085 0.8884 1.0967 1.3599 1.7259 2.3141 3.5954 

2.5 0.3303 0.5230 0.6698 0.8012 0.9444 1.1259 1.3763 1.7634 2.5557 

3.0 0.3303 0.5219 0.6619 0.7720 0.8721 0.9919 1.1725 1.4628 2.0209 

 

Table 2. Numerical values for the variance of the DsPA model. 

𝜷 
𝝀 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 2.7920 12.243 38.665 103.06 229.88 417.28 621.34 779.36 615.37 

1.0 0.3901 0.8140 1.4378 2.4502 4.2371 7.7429 15.802 40.249 177.94 

1.5 0.2475 0.3692 0.4988 0.6724 0.9299 1.3485 2.1203 3.8858 10.421 

2.0 0.2236 0.2727 0.3017 0.3478 0.4232 0.5408 0.7369 1.1271 2.2935 

2.5 0.2213 0.2517 0.2384 0.2287 0.2486 0.3033 0.3864 0.5260 0.8911 

3.0 0.2212 0.2496 0.2252 0.1869 0.1626 0.1789 0.2448 0.3256 0.4729 
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Table 3. Numerical values for the skewness of the DsPA model. 

𝜷 
𝝀 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 4.6187 4.3533 3.9822 3.2831 2.4657 1.7555 1.2590 1.1461 2.0439 

1.0 1.6228 1.4038 1.3664 1.3697 1.3821 1.3943 1.4037 1.4099 1.3511 

1.5 0.9461 0.5856 0.5417 0.5744 0.6191 0.6586 0.6895 0.7124 0.7285 

2.0 0.7459 0.1163 -0.0092 0.1018 0.2223 0.2912 0.3312 0.3598 0.3836 

2.5 0.7226 -0.0655 -0.4988 -0.4984 -0.1012 0.1683 0.1697 0.1591 0.1742 

3.0 0.7218 -0.0869 -0.6648 -1.0922 -0.9663 -0.0481 0.3705 0.0738 0.0476 

 

Table 4. Numerical values for the kurtosis of the DsPA model. 

𝜷 
𝝀 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 41.471 36.784 28.534 18.030 10.188 5.7950 3.7130 3.1485 5.9942 

1.0 5.9572 5.6739 5.7391 5.8240 5.8909 5.9380 5.9690 5.9875 5.4737 

1.5 2.5630 2.7503 3.1474 3.3764 3.4912 3.5508 3.5857 3.6093 3.6262 

2.0 1.6369 1.5891 2.4907 3.0833 3.1595 3.0954 3.0599 3.0514 3.0542 

2.5 1.5246 1.0744 1.8108 3.2354 3.9993 3.4076 2.8767 2.8838 2.8977 

3.0 1.5211 1.0098 1.4967 2.7867 4.9278 5.5909 3.4605 2.4008 2.8802 

 

Table 5. Numerical values for the DI of the DsPA model. 

𝜷 
𝝀 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.5 3.6720 6.4746 10.516 15.747 20.964 24.768 27.891 34.703 50.494 

1.0 0.9866 1.0810 1.2335 1.4543 1.7756 2.2669 3.0939 4.7559 9.6437 

1.5 0.7248 0.6337 0.6068 0.6165 0.6555 0.7276 0.8512 1.0826 1.6688 

2.0 0.6749 0.5109 0.4258 0.3915 0.3859 0.3977 0.4269 0.4870 0.6379 

2.5 0.6699 0.4813 0.3559 0.2854 0.2632 0.2694 0.2808 0.2983 0.3487 

3.0 0.6697 0.4782 0.3402 0.2422 0.1865 0.1804 0.2088 0.2226 0.2340 

 

From Tables 1‒5, we can conclude that the mean is an increasing function of 𝜆 and a 

decreasing function of 𝛽. It is clear that the skewness of the DsPA distribution can be positive or 

negative. The DI showing increasing behavior for larger values of the parameter 𝜆 and small values 

of 𝛽. Further, the DsPA distribution is suitable for over-dispersed and under-dispersed data sets. 

3.2. Mean Residual Life (MRL) 

The MRL function is a helpful reliability characteristic to model and analyze the burn-in and 

maintenance policies. Consider the rv 𝑋 that has the cdf 𝐹 .  . For a discrete rv, the MRL function 

is defined by 
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𝑀𝑅𝐿 =  𝜀 𝑖 = 𝐸 𝑋 − 𝑖 𝑋 ≥ 𝑖 =
1

1 − 𝐹 𝑖 − 1, 𝜆 
   1 − 𝐹 𝑗 − 1, 𝜆  

𝑤

𝑗 =𝑖+1

,    𝑖 ∈ ℕ0, 

where ℕ0 =  0, 1, 2, … , 𝑤  and 0 < 𝑤 < ∞.  

Then, the MRL of the DsPA model reduces to 

𝑀𝑅𝐿 =
1

1 − 𝐹 𝑖 − 1, 𝜆, 𝛽 
  1 − 𝐹 𝑗 − 1, 𝜆, 𝛽  

𝑤

𝑗 =𝑖+1

 

         =
1

 1 −  𝑖 𝛽 ln 𝜆  𝜆 𝑖 𝛽  
   1 −  𝑗 𝛽 ln 𝜆  𝜆 𝑗  𝛽  

𝑤

𝑗 =𝑖+1

 

                       =
1

 1 −  𝑖 𝛽 ln 𝜆  𝜆 𝑖 𝛽
   𝜆 𝑗  𝛽 − ln 𝜆    𝑗 𝛽  𝜆 𝑗  𝛽

𝑤

𝑗=𝑖+1

 

𝑤

𝑗=𝑖+1

 . 

4. Parameter estimation  

In this section, the parameters λ and β are estimated using the maximum likelihood (ML) 

method. 

4.1. Maximum likelihood estimation  

Suppose 𝑥1, … , 𝑥𝑛  be a random sample from  the DsPA distribution with pmf (6). Then the 

log-likelihood function takes the form 

𝐿 =
1

 1 −  𝑖 𝛽 ln 𝜆  𝜆 𝑖 𝛽  
   1 −  𝑗 𝛽 ln 𝜆  𝜆 𝑗  𝛽  

𝑤

𝑗 =𝑖+1

.                            14  

Now, by differentiating (14) w.r.t 𝜆 and 𝛽, we can write 

𝜕𝐿

𝜕𝜆
=  

ln 𝜆   𝑥𝑖 + 1 2𝛽𝜆 𝑥𝑖+1 𝛽 − 𝑥𝑖
2𝛽𝜆𝑥𝑖

𝛽
 

𝜆  1 − 𝑥𝑖
𝛽  ln 𝜆  𝜆𝑥𝑖

𝛽
−   1 −  𝑥𝑖 + 1 𝛽 ln 𝜆  𝜆 𝑥𝑖+1 𝛽  

= 0

𝑛

𝑖=1

                            15  

and 

𝜕𝐿

𝜕𝛽
=  

 ln 𝜆 2  𝜆 𝑥𝑖+1 𝛽  𝑥𝑖 + 1 2𝛽 ln(𝑥𝑖 + 1) − 𝜆𝑥𝑖
𝛽
𝑥𝑖

2𝛽 ln 𝑥𝑖 

  1 − 𝑥𝑖
𝛽  ln 𝜆  𝜆𝑥𝑖

𝛽
−   1 −  𝑥𝑖 + 1 𝛽 ln 𝜆  𝜆 𝑥𝑖+1 𝛽  

 

𝑛

𝑖=1

= 0.                             16  

 

The ML estimates (MLEs) of 𝜆 and 𝛽 follow from the above equation. Eqs (15) and (16) can 

be solved using iterative procedures such as Newton-Raphson. For this purpose, we use the maxLik 

function of R software [26]. 

4.2. Simulation study 

In this section, we carried out a numerical simulation to access the performance of the ML 
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estimation method. This assessment is done by generating 𝑁 = 10,000 samples using the qf of the 

DsPA model for different sample sizes 𝑛 = 10, 20, 50, and 100 and for several values of the 

parameters 𝜆  and 𝛽 , where  𝜆, 𝛽 =  0.50, 0.50 ,  0.50, 2.0 ,  0.90, 1.20 , (0.90, 2.0).  The 

assessment is completed using absolute bias, mean relative errors (MREs), and mean square errors 

(MSEs) which are defined by 

𝐵𝑖𝑎𝑠 𝜹 =
1

𝑁
  𝜹 𝑖 − 𝜹 

𝑁

𝑖=1

, 𝑀𝑆𝐸 𝜹 =
1

𝑁
  𝜹 𝑖 − 𝜹 

2
𝑁

𝑖=1

 and  𝑀𝑅𝐸 𝜹 =
1

𝑁
 

𝜹 𝑖

𝜹𝑖

𝑁

𝑖=1

, 

where 𝜹 = (𝜆,𝛽). 

The simulation results for 𝜆 and 𝛽 are reported in Tables 6‒8. The bias, MSE and MRE of the 

parameters 𝜆 and 𝛽 are computed using the R program using the ML method. For all values of 𝜆 

and 𝛽, the ML estimation approach illustrates the consistency property, that is, the MSEs and MREs 

decrease as 𝑛 increases. 

From Tables 6‒8, we conclude that: 

1. The estimates of 𝜆 and 𝛽 close to their true values with the increase of 𝑛 for all studied cases. 

2. The MSEs for 𝜆 and 𝛽 decrease with the increase of 𝑛 for all studied cases. 

3. The MREs for 𝜆 and 𝛽 decrease with the increase of 𝑛 for all studied cases. 

Table 6. Simulation results of the DsPA distribution for 𝜆 = 0.5 and 𝛽 = 0.5. 

𝑛 𝐸 𝜆  𝐸 𝛽  Bias 𝜆  Bias 𝛽  MSE 𝜆  MSE 𝛽  MRE 𝜆  MRE 𝛽  

10 0.4605 0.5804 -0.0395 0.0804 0.0483 0.0333 0.0789 0.1609 

20 0.4796 0.5370 -0.0204 0.0370 0.0247 0.0111 0.0409 0.0740 

50 0.4910 0.5143 -0.0090 0.0143 0.0098 0.0033 0.0180 0.0286 

100 0.4966 0.5065 -0.0034 0.0065 0.0049 0.0015 0.0069 0.0130 

200 0.4975 0.5037 -0.0025 0.0037 0.0024 0.0007 0.0050 0.0074 

 

Table 7. Simulation results of the DsPA distribution for 𝜆 = 0.5 and 𝛽 = 2.0. 

𝑛 𝐸 𝜆  𝐸 𝛽  Bias 𝜆  Bias 𝛽  MSE 𝜆  MSE 𝛽  MRE 𝜆  MRE 𝛽  

10 0.4654 2.3160 -0.0346 0.3160 0.0490 0.5537 0.0692 0.1580 

20 0.4809 2.1419 -0.0191 0.1419 0.0243 0.1730 0.0382 0.0709 

50 0.4905 2.0571 -0.0095 0.0571 0.0097 0.0514 0.0191 0.0286 

100 0.4970 2.0243 -0.0030 0.0243 0.0050 0.0247 0.0060 0.0122 

200 0.4984 2.0125 -0.0016 0.0125 0.0024 0.0115 0.0032 0.0062 

 

Table 8. Simulation results of the DsPA distribution for 𝜆 = 0.9 and 𝛽 = 1.2. 

𝑛 𝐸 𝜆  𝐸 𝛽  Bias 𝜆  Bias 𝛽  MSE 𝜆  MSE 𝛽  MRE 𝜆  MRE 𝛽  

10 0.8630 1.3915 -0.0370 0.1915 0.0990 0.1973 0.0411 0.1596 

20 0.8843 1.2834 -0.0157 0.0834 0.0473 0.0630 0.0174 0.0695 

50 0.8926 1.2310 -0.0074 0.0310 0.0181 0.0190 0.0082 0.0258 

100 0.8972 1.2154 -0.0028 0.0154 0.0088 0.0086 0.0031 0.0129 

200 0.8980 1.2076 -0.0020 0.0076 0.0045 0.0043 0.0022 0.0063 
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Table 9. Simulation results of the DsPA distribution for 𝜆 = 0.9 and 𝛽 = 2.0. 

𝑛 𝐸 𝜆  𝐸 𝛽  Bias 𝜆  Bias 𝛽  MSE 𝜆  MSE 𝛽  MRE 𝜆  MRE 𝛽  

10 0.8690 2.3159 -0.0310 0.3159 0.1005 0.5381 0.0344 0.1580 

20 0.8785 2.1443 -0.0215 0.1443 0.0454 0.1699 0.0239 0.0722 

50 0.8941 2.0523 -0.0059 0.0523 0.0183 0.0535 0.0065 0.0261 

100 0.8957 2.0278 -0.0043 0.0278 0.0089 0.0246 0.0048 0.0139 

200 0.8980 2.0139 -0.0020 0.0139 0.0044 0.0117 0.0022 0.0070 

5. Three real-life applications 

In this section, we illustrate the importance of the newly DsPA distribution by utilizing three 

real-life datasets. We shall compare the fits of the DsPA distribution with the following competing 

discrete distributions which are reported in Table 10.  

Table 10. The competing discrete models of the DsPA distribution with their pmfs. 

Model  Abbreviation pmf 

Discrete Bur-XII  DsBXII 𝑃 𝑥 = 𝜆ln 1+𝑥𝛼   −  𝜆ln 1+ 1+𝑥 𝛼  . 

Uniform Poisson–Ailamujia UPA 𝑃 𝑥 = 2 𝜆 (1 + 2 𝜆)−𝑥−1. 

Poisson Poi 𝑃 𝑥 =
𝑒−𝜆𝜆𝑥

𝑥!
. 

Discrete-Pareto DsPr 𝑃 𝑥 = 𝑒−𝜆 ln 1+𝑥  −  𝑒−𝜆ln 2+𝑥 . 

Discrete-Rayleigh DsR 𝑃 𝑥 =  𝑒
−

𝑥2

2𝜆2 −  𝑒
−
 𝑥+1 2

2𝜆2 . 

Discrete inverse-Rayleigh DsIR 𝑃 𝑥 =  𝑒
−

𝜆
(1+𝑥)2 −  𝑒

−
𝜆
𝑥2 . 

Discrete Burr-Hutke DsBH 𝑃 𝑥 =  
1

𝑥 + 1
−

𝜆

𝑥 + 2
 𝜆𝑥 . 

 

The fitted distributions are compared using the negative maximum log-likelihood (-Loglik.), 

Akaike information criterion (AIC), Bayesian information criterion (BIC), and the p-value of 

Kolmogorov–Smirnov test (KS p-value).  

Dataset I: The first dataset is about the failure times for a sample of 15 electronic components in 

an acceleration life test [27]. The data observations are: 1.0, 5.0, 6.0, 11.0, 12.0, 19.0, 20.0, 22.0, 

23.0, 31.0, 37.0, 46.0, 54.0, 60.0 and 66.0. 

Dataset II: The second dataset is about the number of fires in Greece from July 1, 1998 to 

August 31, 1998. This dataset is studied [28]. The data observations are: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 

8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 15, 15, 15, 15, 16, 20 and 

43. 

Dataset III: The third dataset consists of 48 final mathematics examination marks for 

slow-paced students in the Indian Institute of Technology at Kanpur. The data is analyzed by [29]. 

The observations are: 29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 

15, 14,70, 44, 6, 23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19 and 31.  
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The MLEs of the competing discrete models, standard errors (SEs), and goodness-of-fit 

measures are listed in Tables 11‒13 for the three datasets, respectively. For visual comparisons, the 

P-P (probability–probability) plots of fitted distributions are displayed in Figures 4, 6 and 8 for the 

analyzed datasets, respectively. Furthermore, the estimated cdf, sf, hrf of the DsPA distribution are 

depicted in Figures 5, 7 and 9, respectively. 

The findings in Tables 11‒13 illustrate that the DsPA distribution provides a superior fit over 

other competing discrete models, since it has the lowest values for all measures and the largest K-S 

p-value. 

Table 11. Findings of the competing discrete distributions to the failure times of 

electronic components. 

Model 
𝝀 𝜶 Measures 

MLE SEs MLE SEs -Loglik. AIC BIC KS p-value 

DsBXII 0.9839 0.0355 20.868 46.483 75.69 155.38 156.80 0.0150 

UPA 0.0182  0.0047 - - 65.00 132.00 132.71 0.6734 

Poi 27.535 1.3548 - - 151.21 304.41 305.12 0.0180 

DsPr 0.3283 0.0848 - - 77.40 156.80 157.51 0.0097 

DsR 24.384 3.1487 - - 66.39 134.79 135.50 0.4300 

DsIR 42.021 11.243 - - 83.99 169.97 170.68 0.0000 

DsBH 0.9992 0.0076 - - 91.37 184.74 185.44 0.0000 

DsPA 0.8886 0.0674 0.8588 0.1738 64.49 131.58 132.97 0.9500 

 

 

Figure 4. The P-P plots of the competing discrete models for dataset I. 
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Figure 5. The fitted cdf, sf, and hrf plots for dataset I. 

Table 12. Findings of the competing discrete distributions to the number of fires in Greece. 

Model 
𝝀 𝜶 Measures 

MLE SE MLE SE -Loglik. AIC BIC KS p-value 

DsBXII 0.7612 0.0427 2.5026 0.4870 373.39 750.79 756.41 0.0000 

UPA 0.0926  0.0090 - - 341.14 684.28 687.09 0.0028 

Poi 5.3988 0.2095 - - 467.83 937.65 940.47 0.0000 

DsPr 0.6046 0.0546 - - 389.64 781.27 784.08 0.0000 

DsR 5.6792 0.2567 - - 385.25 772.49 775.31 0.0000 

DsIR 3.9959 0.3995 - - 412.72 827.44 830.25 0.0000 

DsBH 0.9836 0.0127 - - 407.16 816.31 819.12 0.0000 

DsPA 0.5812 0.0407 0.7709 0.0562 340.33 684.67 690.29 0.2484 

 

Figure 6. The P-P plots of the competing discrete models for dataset II. 
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Figure 7. The fitted cdf, sf, and hrf plots for dataset II. 

Table 13. Findings of the competing discrete distributions to the the examination marks 

in mathematics. 

Model 
𝝀 𝜶 Measures 

MLE SE MLE SE -Loglik. AIC BIC KS p-value 

DsBXII 0.9382 0.1926 5.1500 16.5597 247.48 498.97 502.71 0.0000 

UPA 0.0193  0.0028 - - 205.11 412.22 414.09 0.0174 

Poi 25.8950 0.7345 - - 396.59 795.18 797.05 0.0000 

DsPr 0.3225 0.0466 - - 215.18 504.36 506.23 0.0000 

DsR 22.7562 1.6427 - - 201.89 405.79 407.66 0.0460 

DsIR 177.56 26.02 - - 205.13 412.27 414.14 0.0000 

DsBH 0.9990 0.0046 - - 297.68 597.35 599.22 0.0000 

DsPA 0.9409 0.0231 1.0621 0.1113 197.44 398.88 402.62 0.8102 

 

 

Figure 8. The P-P plots of the competing discrete models for dataset III. 

 



8358 

AIMS Mathematics  Volume 7, Issue 5, 8344–8360. 

 

Figure 9. The fitted cdf, sf, and hrf plots for dataset III. 

6. Conclusions  

In this study, a new one-parameter discrete model is proposed as a good alternative to some 

well-known discrete distributions. The newly introduced model is called the 

discrete-power-Ailamujia (DsPA) distribution. Some statistical properties of the DsPA distribution 

are derived. Its parameters are estimated by the maximum likelihood method. A simulation study is 

carried out to check the performance of the estimators. It is observed that the maximum likelihood 

method is efficient in estimating the DsPA parameters for large samples. Finally, three real-world 

datasets are analyzed to check the usefulness and applicability of the DsPA distribution. The 

goodness-of-fit measures and figures show that the DsPA distribution is a useful attractive alternative 

for competing discrete models. 
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