We study the semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $. We prove that this variety is finitely based and prove that the lattice of subvarieties of this variety is a distributive lattice of order 2327. Moreover, we deduce this variety is hereditarily finitely based.
Citation: Lili Wang, Aifa Wang, Peng Li. On a semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $[J]. AIMS Mathematics, 2022, 7(5): 8361-8373. doi: 10.3934/math.2022466
We study the semiring variety generated by $ B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}, Z_2, W_2 $. We prove that this variety is finitely based and prove that the lattice of subvarieties of this variety is a distributive lattice of order 2327. Moreover, we deduce this variety is hereditarily finitely based.
[1] | S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, New York: Springer, 1981. |
[2] | R. El Bashir, T. Kepka, Congruence-simple semirings, Semigroup Forum, 75 (2007), 588–608. https://doi.org/10.1007/s00233-007-0725-7 doi: 10.1007/s00233-007-0725-7 |
[3] | P. Gajdoš, M. Kuřil, On free semilattice-ordered semigroups satisfying $x^n\approx x$, Semigroup Forum, 80 (2010), 92–104. https://doi.org/10.1007/s00233-009-9188-3 doi: 10.1007/s00233-009-9188-3 |
[4] | S. Ghosh, F. Pastijn, X. Z. Zhao, Varieties generated by ordered bands Ⅰ, Order, 22 (2005), 109–128. https://doi.org/10.1007/s11083-005-9011-z doi: 10.1007/s11083-005-9011-z |
[5] | J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Harlow: Longman Scientific and Technical, 1992. |
[6] | K. Głazek, A guide to the literature on semirings and their applications in mathematics and information science, Dordrecht: Kluwer Academic Publishers, 2002. |
[7] | J. M. Howie, Fundamentals of Semigroup Theory, London: Clarendon Press, 1995. |
[8] | M. Kuřil, L. Polák, On varieties of semilattice-ordered semigroups, Semigroup Forum, 71 (2005), 27–48. https://doi.org/10.1007/s00233-004-0176-3 doi: 10.1007/s00233-004-0176-3 |
[9] | F. Pastijn, Varieties generated by ordered bands Ⅱ, Order, 22 (2005), 129–143. https://doi.org/10.1007/s11083-005-9013-x doi: 10.1007/s11083-005-9013-x |
[10] | F. Pastijn, X. Z. Zhao, Varieties of idempotent semirings with commutative addition, Algebr. Univ., 54 (2005), 301–321. https://doi.org/10.1007/s00012-005-1947-8 doi: 10.1007/s00012-005-1947-8 |
[11] | M. Petrich, N. R. Reilly, Completely Regular Semigroups, New York: Wiley, 1999. |
[12] | M. M. Ren, X. Z. Zhao, The variety of semilattice-ordered semigroups satisfying $x^{3}\approx x$ and $xy\approx yx$, Period Math Hung, 72 (2016), 158–170. https://doi.org/10.1007/s10998-016-0116-5 doi: 10.1007/s10998-016-0116-5 |
[13] | M. M. Ren, X. Z. Zhao, A. F. Wang, On the varieties of ai-semirings satisfying $x^{3}\approx x$, Algebr. Univ., 77 (2017), 395–408. https://doi.org/10.1007/s00012-017-0438-z doi: 10.1007/s00012-017-0438-z |
[14] | M. M. Ren, L. L. Zeng, On a hereditarily finitely based ai-semiring variety, Soft Comput., 23 (2019), 6819–6825. https://doi.org/10.1007/s00500-018-03719-0 doi: 10.1007/s00500-018-03719-0 |
[15] | Y. Shao, M. M. Ren, On the varieties generated by ai-semirings of order two, Semigroup Forum, 91 (2015), 171–184. https://doi.org/10.1007/s00233-014-9667-z doi: 10.1007/s00233-014-9667-z |
[16] | A. F. Wang, L. L. Wang, P. Li, On a ai-semiring variety generated by $B^{0}, (B^{0})^{\ast}, A^{0}, N_{2}, T_{2}$, in press. |