In this paper, we consider the following nonlinear Schrödinger equation with attractive inverse-power potentials
$ i\partial_t\psi+\Delta\psi+\gamma|x|^{-\sigma}\psi+|\psi|^\alpha\psi = 0, \; \; \; (t, x)\in\mathbb{R}\times\mathbb{R}^N, $
where $ N\geq3 $, $ 0 < \gamma < \infty $, $ 0 < \sigma < 2 $ and $ \frac{4}{N} < \alpha < \frac{4}{N-2} $. By using the concentration compactness principle and considering a local minimization problem, we prove that there exists a $ \gamma_0 > 0 $ sufficiently small such that $ 0 < \gamma < \gamma_0 $ and for any $ a\in(0, a_0) $, there exist stable standing waves for the problem in the $ L^2 $-supercritical case. Our results are complement to the result of Li-Zhao in [
Citation: Yali Meng. Existence of stable standing waves for the nonlinear Schrödinger equation with attractive inverse-power potentials[J]. AIMS Mathematics, 2022, 7(4): 5957-5970. doi: 10.3934/math.2022332
In this paper, we consider the following nonlinear Schrödinger equation with attractive inverse-power potentials
$ i\partial_t\psi+\Delta\psi+\gamma|x|^{-\sigma}\psi+|\psi|^\alpha\psi = 0, \; \; \; (t, x)\in\mathbb{R}\times\mathbb{R}^N, $
where $ N\geq3 $, $ 0 < \gamma < \infty $, $ 0 < \sigma < 2 $ and $ \frac{4}{N} < \alpha < \frac{4}{N-2} $. By using the concentration compactness principle and considering a local minimization problem, we prove that there exists a $ \gamma_0 > 0 $ sufficiently small such that $ 0 < \gamma < \gamma_0 $ and for any $ a\in(0, a_0) $, there exist stable standing waves for the problem in the $ L^2 $-supercritical case. Our results are complement to the result of Li-Zhao in [
[1] | A. Bensouilah, V. D. Dinh, S. Zhu, On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential, J. Math. Phys., 59 (2018), 101505. http://dx.doi.org/10.1063/1.5038041 doi: 10.1063/1.5038041 |
[2] | T. Cazenave, Semilinear Schrödinger equations, New York: American Mathematical Society, 2003. http://dx.doi.org/10.11429/sugaku.0644425 |
[3] | T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger eqations, Commun. Math. Phys., 85 (1982), 549–561. http://dx.doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504 |
[4] | V. D. Dinh, On nonlinear Schrödinger eqations with attractive inverse-power potentials, 2020. Available from: https://arXiv.org/abs/1903.04636 |
[5] | V. D. Dinh, On nonlinear Schrödinger equations with repulsive inverse-power potentials, Acta Appl. Math., 171 (2021), 14. http://dx.doi.org/10.1007/S10440-020-00382-2 doi: 10.1007/S10440-020-00382-2 |
[6] | B. Feng, R. Chen, J. Ren, Existence of stable standing waves for the fractional Schrödinger equations with combined power-type and Choquard-type nonlinearities, J. Math. Phys., 60 (2019), 051512. http://dx.doi.org/10.1063/1.5082684 doi: 10.1063/1.5082684 |
[7] | B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger Poisson equation in the $L^2$-critical case, J. Dyn. Differ. Equ., 32 (2020), 1357–1370. http://dx.doi.org/10.1007/s10884-019-09779-6 doi: 10.1007/s10884-019-09779-6 |
[8] | B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499–2507. http://dx.doi.org/10.1016/j.camwa.2017.12.025 doi: 10.1016/j.camwa.2017.12.025 |
[9] | B. Feng, Q. Wang, Strong instability of standing waves for the nonlinear Schrödinger equation in trapped dipolar quantum gases, J. Dyn. Differ. Equ., 33 (2021), 1989–2008. http://dx.doi.org/10.1007/s10884-020-09881-0 doi: 10.1007/s10884-020-09881-0 |
[10] | B. Feng, S. Zhu, Stability and instability of standing waves for the fractional nonlinear Schrödinger equations, J. Differ. Equations, 292 (2021), 287–324. http://dx.doi.org/10.1016/j.jde.2021.05.007 doi: 10.1016/j.jde.2021.05.007 |
[11] | B. Feng, L. Cao, J. Liu, Existence of stable standing waves for the Lee-Huang-Yang corrected dipolar Gross-Pitaevskii equation, Appl. Math. Lett., 115 (2021), 106952. http://dx.doi.org/10.1016/J.AML.2020.106952 doi: 10.1016/J.AML.2020.106952 |
[12] | N. Fukaya, Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential, Commun. Pure Appl. Anal., 20 (2021), 121–143. https://doi.org/10.1515/sagmb-2020-0054 doi: 10.1515/sagmb-2020-0054 |
[13] | N. Fukaya, M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, Osaka J. Math., 56 (2019), 713–726. |
[14] | R. Fukuizumi, M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differ. Integral Equ., 16 (2003), 111–128. https://doi.org/10.2337/diaspect.16.2.111 doi: 10.2337/diaspect.16.2.111 |
[15] | S. Golenia, M. Mandich, Limiting absorption principle for discrete Schrödinger operators with a Wigner-von Neumann potential and a slowly decaying potential, Ann. Henri Poincaré, 22 (2021), 83–120. https://doi.org/10.1007/s00023-020-00971-9 doi: 10.1007/s00023-020-00971-9 |
[16] | M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), 160–197. http://dx.doi.org/10.1016/0022-1236(87)90044-9 doi: 10.1016/0022-1236(87)90044-9 |
[17] | H. Han, F. Li, T. Luo, Z. Wang, Ground state for the X-ray free electron laser Schrödinger equation with harmonic potential, Appl. Math. Comput., 401 (2021), 126113. http://dx.doi.org/10.1016/J.AMC.2021.126113 doi: 10.1016/J.AMC.2021.126113 |
[18] | L. Jeanjean, J. Jendrej, T. T. Le, N. Visciglia, Orbital stability of ground states for a Sobolev critical Schrödinger equation, 2020. Available from: https://arXiv.org/abs/2008.12084 |
[19] | E. H. Lieb, The stability of matter: From atoms to stars, B. Am. Math. Soc., 22 (1990), 1–49. http://dx.doi.org/10.1090/S0273-0979-1990-15831-8 doi: 10.1090/S0273-0979-1990-15831-8 |
[20] | E. Lenzmann, M. Lewin, Dynamical ionization bounds for atoms, Anal. PDE, 6 (2013), 1183–1211. http://dx.doi.org/10.2140/apde.2013.6.1183 doi: 10.2140/apde.2013.6.1183 |
[21] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145. http://dx.doi.org/10.1016/S0294-1449(16)30428-0 doi: 10.1016/S0294-1449(16)30428-0 |
[22] | J. Liu, Z. He, B. Feng, Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement, J. Math. Anal. Appl., 506 (2022), 125604. http://dx.doi.org/10.1016/j.jmaa.2021.125604 doi: 10.1016/j.jmaa.2021.125604 |
[23] | X. Li, J. Zhao, Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 79 (2020), 303–316. http://dx.doi.org/10.1016/j.camwa.2019.06.030 doi: 10.1016/j.camwa.2019.06.030 |
[24] | H. Mizutani, Strichartz estimates for Schrödinger equations with slowly decaying potentials, J. Funct. Anal., 279 (2020), 108789. http://dx.doi.org/10.1016/j.jfa.2020.108789 doi: 10.1016/j.jfa.2020.108789 |
[25] | N. Okazawa, T. Suzuki, T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control The., 1 (2012), 337–354. http://dx.doi.org/10.3934/eect.2012.1.337 doi: 10.3934/eect.2012.1.337 |
[26] | Y. Wang, B. Feng, Sharp thresholds of blow-up and global existence for the Schrödinger equation with combined power-type and Choquard-type nonlinearities, Bound. Value Probl., 2019 (2019), 195. http://dx.doi.org/10.1186/s13661-019-01310-6 doi: 10.1186/s13661-019-01310-6 |