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Abstract: In this paper, we consider the following nonlinear Schrödinger equation with attractive
inverse-power potentials

i∂tψ + ∆ψ + γ|x|−σψ + |ψ|αψ = 0, (t, x) ∈ R × RN ,

where N ≥ 3, 0 < γ < ∞, 0 < σ < 2 and 4
N < α < 4

N−2 . By using the concentration compactness
principle and considering a local minimization problem, we prove that there exists a γ0 > 0 sufficiently
small such that 0 < γ < γ0 and for any a ∈ (0, a0), there exist stable standing waves for the problem in
the L2-supercritical case. Our results are complement to the result of Li-Zhao in [23].

Keywords: nonlinear Schrödinger equation; inverse-power potentials; stable standing waves
Mathematics Subject Classification: 35Q55

1. Introduction and main results

In this paper, we consider the following Cauchy problem for the nonlinear Schrödinger equation
with an attractive inverse-power potential{

i∂tψ + ∆ψ + γ|x|−σψ + |ψ|αψ = 0, (t, x) ∈ R × RN ,

ψ(0, x) = ψ0(x), x ∈ RN ,
(1.1)

where N ≥ 3, ψ : [0,T ∗) × RN → C is an unknown complex valued function with 0 < T ∗ ≤ ∞,
ψ0 ∈ H1(RN), γ ∈ (0,+∞), σ ∈ (0, 2) and 4

N < α < 4
N−2 .

In the case σ = 1, i.e., the operator ∆ +
γ

|x| with Coulomb potential, (1.1) describes the situation
where the wave function of an electron, satisfying the Schrödinger evolution equation, is influenced by
m nuclei, see [19] for a broader introduction. In the case 0 < σ < 2, i.e., the operator ∆ +

γ

|x|σ with
slowly decaying potentials, we refer the readers to [15] and references therein. It also attracted a great
deal of attention from mathematicians in recent years, see, e.g. [4, 13, 14, 23].
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Recently, this type of equations has been studied widely in [1, 4–11, 13, 17, 20, 22–26]. In
particular, Eq (1.1) enjoys a class of special solutions, which are called standing waves, namely
solutions of the form ψ(t, x) = eiωtu(x), where ω ∈ R is a frequency and u ∈ H1(RN) satisfies the
elliptic equation

− ∆u + ωu − γ|x|−σu − |u|αu = 0. (1.2)

The Eq (1.2) is variational and its action functional is defined by

S ω(u) := Eγ(u) +
ω

2
‖u‖2L2 , (1.3)

where the corresponding energy functional Eγ(u) is defined by

Eγ(u) :=
1
2
‖∇u‖2L2 −

γ

2

∫
RN

|u(x)|2

|x|σ
dx −

1
α + 2

‖u‖α+2
Lα+2 . (1.4)

For the evolutional type Eq (1.1), one of the most interesting problems is to consider the stability of
standing waves, which is defined as follows:

Definition 1.1. Assume u is a solution of (1.2). The standing wave eiωtu(x) is called orbitally stable in
H1(RN), if for every ε > 0, there exists δ > 0 such that if ψ0 ∈ H1(RN) satisfies

‖ψ0 − u‖H1 ≤ δ,

then the solution ψ(t) to (1.1) with ψ|t=0 = ψ0 satisfies

sup
t∈R

inf
θ∈R,y∈RN

‖ψ(t, ·) − eiθu(· − y)‖H1 ≤ ε.

There are two main methods to study the stability of standing waves. One is the stability or
instability criterion in [16] proposed by Grillakis, Shatah and Strauss. It says that the standing wave
eiωtuω is stable if ∂

∂ω
‖uω‖2L2 > 0 and unstable if not, see [12] for more details. However, it is hard to

estimate the sign of ∂
∂ω
‖uω‖2L2 for nonlinear Schrödinger equations without scaling invariance,

e.g. (1.1). The other is the constrained minimization approach introduced by Cazenave and Lions
in [3]. In this paper, we thus take into account the orbital stability of the set of minimizers by using
the method from Cazenave and Lions in [3].

Now we recall the following definition of the orbital stability of the setM.

Definition 1.2. The set M ⊂ H1(RN) is called orbitally stable if for every ε > 0, there exists δ > 0
such that for any initial data ψ0 ∈ H1(RN) satisfying

inf
u∈M
‖ψ0 − u‖H1 < δ,

the corresponding solution u to (1.1) satisfies

inf
u∈M
‖ψ(t) − u‖H1 < ε, ∀ t > 0.
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Based on the above definition, in order to study the stability, we require that the solution of (1.1)
exists globally, at least for initial data ψ0 enough close toM. In the L2-subcritical case, all solutions
for (1.1) exist globally. Therefore, the stability of standing waves has been studied widely in this case,
see, e.g. [3, 4, 14, 23]. However, in the L2-supercritical case, we know that the solution of (1.1) with
small initial data exists globally, but for some large initial data, the solution of (1.1) may blow up in
finite time by the local well-posedness theory of NLS, see [2] for further inference.

For Eq (1.1), in the mass subcritical and critical cases, i.e., 0 < α ≤ 4
N , Dinh in [4] and Li-Zhao

in [23] studied the stability of set of minimizers by using the concentration compactness principle. In
the mass supercritical case, i.e., 4

N < α < 4
N−2 , Fukaya-Ohta in [14] proved the strong instability of

standing wave eiωtu under the assumption ∂2
λEγ(uλ)|λ=1 ≤ 0 with uλ(x) := λ

N
2 u(λx). Therefore, whether

there are stable standing waves is an interesting problem in the mass supercritical case. In this paper,
we will solve this problem by considering the following minimization problem

mγ(a) := inf
u∈S (a)

Eγ(u), (1.5)

where
S (a) = {u ∈ H1(RN), ‖u‖2L2 = a}. (1.6)

In the L2-supercritical case, the energy Eγ(u) is unbounded from below on S (a). Actually, when
4
N < α < 4

N−2 , taking u ∈ S (a) and setting uλ(x) := λ
N
2 u(λx), then ‖u‖2L2 = ‖uλ‖2L2 = a, and we will find

that

Eγ(uλ) =
λ2

2
‖∇u‖2L2 −

λσγ

2

∫
RN

|u(x)|2

|x|σ
dx −

λ
Nα
2

α + 2
‖u‖α+2

Lα+2 → −∞,

as λ → ∞, where 2 < Nα
2 < 2N

N−2 . Thus, we can not discuss the global minimization problem (1.5) to
study the existence and stability of standing waves for (1.1). However, inspired by the thought in [18],
we consider the further constrained minimization problem:

mγ(a, r0) := inf
u∈V(a)

Eγ(u). (1.7)

The sets V(a) and ∂V(a) are given by

V(a) := {u ∈ S (a) : ‖∇u‖2L2 < r0}, ∂V(a) := {u ∈ S (a) : ‖∇u‖2L2 = r0},

for an appropriate r0 > 0, depending only on a0 but not on a ∈ (0, a0). However, compared with
the case (i.e., γ = 0) considered in [18], the energy functional of (1.2) is not invariant under the
scaling transform due to the inhomogeneous nonlinearity γ|x|−σu. Furthermore, we cannot prove the
preconceived limiting problem of the energy functional under translation sequences. In fact, we can
solve the minimization problem (1.7) by proving the boundedness of the translation sequences. We
now denote all the energy minimizers of (1.7) by

M(a) := {u ∈ V(a) : Eγ(u) = mγ(a, r0)}.

Our main results are as follows:

Theorem 1.3. Let N ≥ 3, 0 < σ < 2 and 4
N < α < 4

N−2 . Then there exists a γ0 > 0 sufficiently small
such that 0 < γ < γ0 and for any a ∈ (0, a0), the following properties hold:

(i) ∅ ,M(a) ⊂ V(a).
(ii)M(a) is orbitally stable.
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This paper is organized as follows: In Section 2, we firstly give some variational problems and then
prove that the solution ψ(t) of (1.1) with the initial data ψ0 exists globally. In Section 3, we will show
thatM(a) is orbitally stable.

2. The variational problem

In this section, we first establish the following classical inequalities: If N ≥ 2 and α ∈ [2, 2N
N−2 ),

then the following Gagliardo-Nirenberg inequality holds that

‖u‖α+2
Lα+2 ≤ C(α)‖u‖α+2− Nα

2
L2 ‖∇u‖

Nα
2

L2 , ∀ u ∈ H1(RN), (2.1)

where C(α) is the sharp constant. Let 1 ≤ p < ∞, if σ < N is such that 0 ≤ σ ≤ p, then |u(·)|p

|·|σ
∈ L1(RN)

for any u ∈ H1(RN). Moreover,∫
RN

|u(x)|p

|x|σ
dx ≤ C1‖u‖

p−σ
Lp ‖∇u‖σLp , ∀ u ∈ H1(RN), (2.2)

where C1 =
(

p
N−σ

)σ
.

Secondly, by (2.1) and (2.2), we have

Eγ(u) ≥‖∇u‖2L2

(
1
2
−
γC1

2
‖u‖2−σL2 ‖∇u‖σ−2

L2 −
C(α)
α + 2

‖u‖α+2− Nα
2

L2 ‖∇u‖
Nα
2 −2

L2

)
=‖∇u‖2L2 f (‖u‖2L2 , ‖∇u‖2L2). (2.3)

Next, setting

η0 = 2 − σ, η1 = σ − 2, η2 = α + 2 −
Nα
2
, η3 =

Nα
2
− 2,

we now consider the function f (a, r) defined on (0,∞) × (0,∞) by

f (a, r) =
1
2
−
γC1

2
a
η0
2 r

η1
2 −

C(α)
α + 2

a
η2
2 r

η3
2 , (2.4)

and, for each a ∈ (0,∞), its restriction ga(r) defined on (0,∞) by r 7→ ga(r) = f (a, r). For further
reference, note that for any N ≥ 3, η0 ∈ (0, 2), η1 ∈ (−2, 0), η2 ∈ (0, 4

N ) and η3 ∈ (0, 4
N−2 ).

Lemma 2.1. [2, Theorem 9.2.6] Let N ≥ 3, 0 < σ < 2 and 4
N < α < 4

N−2 . Then for any initial data
ψ0 ∈ H1(RN), there exists T = T (‖ψ0‖H1) such that (1.1) admits a unique solution with ψ(0) = ψ0.
Let [0,T ∗) be the maximal time interval on which the solution ψ is well-defined, if T ∗ < ∞, then
‖ψ(t)‖H1 → ∞ as t ↑ T ∗. Moreover, for all 0 < t < T ∗, the solution ψ(t) satisfies the following
conservations of mass and energy

‖ψ(t)‖2L2 = ‖ψ0‖
2
L2 , Eγ(ψ(t)) = Eγ(ψ0),

where the energy Eγ(u) is defined by (1.4).
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Lemma 2.2. For every a > 0, the function ga(r) = f (a, r) has a unique global maximum and the
maximum value satisfies 

max
r>0

ga(r) > 0, i f a < a0,

max
r>0

ga(r) = 0, i f a = a0,

max
r>0

ga(r) < 0, i f a > a0,

where

a0 :=
[

1
2K

] 2(η3−η1)
η0η3−η1η2

> 0, (2.5)

with

K :=
γC1

2

[
−

C1η1(α + 2)
2C(α)η3

] η1
η3−η1

+
C(α)
α + 2

[
−

C1η1(α + 2)
2C(α)η3

] η3
η3−η1

. (2.6)

Proof. According to the definition of ga(r), we have

g′a(r) = −
γC1η1

4
a
η0
2 r

η1
2 −1 −

C(α)η3

2(α + 2)
a
η2
2 r

η3
2 −1.

Hence, the equation g′a(r) = 0 has a unique solution given by

ra =

[
−
γC1η1(α + 2)

2C(α)η3

] 2
η3−η1

a
η0−η2
η3−η1 . (2.7)

Noticing that ga(r) → −∞ as r → 0 and ga(r) → −∞ as r → ∞, we obtain that ra is the unique global
maximum point of ga(r). Actually, the maximum value is

max
r>0

ga(r) =
1
2
−
γC1

2
a
η0
2 r

η1
2

a −
C(α)
α + 2

a
η2
2 r

η3
2

a

=
1
2
−
γC1

2
a
η0
2

[
−

C1η1(α + 2)
2C(α)η3

] η1
η3−η1

a
η1(η0−η2)
2(η3−η1)

−
C(α)
α + 2

a
η2
2

[
−

C1η1(α + 2)
2C(α)η3

] η3
η3−η1

a
η3(η0−η2)
2(η3−η1)

=
1
2
− Ka

η0η3−η1η2
2(η3−η1) .

According to the definition of a0, we have max
r>0

ga0(r) = 0. Hence, the lemma follows. �

Now let a0 > 0 be given by (2.5) and r0 := ra0 > 0 being determined by (2.7). Note that by the
proof of Lemma 2.2, we have f (a0, r0) = 0 and f (a, r0) ≥ 0 for all a ∈ (0, a0). We denote

B(r0) := {u ∈ H1(RN) : ‖∇u‖2L2 < r0} and V(a) := S (a) ∩ B(r0).

We now consider the following local minimization problem:

mγ(a, r0) := inf
u∈V(a)

Eγ(u), ∀ a ∈ (0, a0). (2.8)

And if (a1, r1) ∈ (0,∞) × (0,∞) be such that f (a1, r1) ≥ 0, then for any a2 ∈ (0, a1], by Lemma 2.2 and
direct calculations, we have

f (a2, r2) ≥ 0 if r2 ∈ (
a2

a1
r1, r1). (2.9)
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Theorem 2.3. Let N ≥ 3, 0 < σ < 2, 4
N < α < 4

N−2 and a ∈ (0, a0), there exists a γ0 > 0 sufficiently
small such that 0 < γ < γ0. Then, there exists u ∈ H1(RN) such that Eγ(u) = mγ(a, r0).

Lemma 2.4. For any a ∈ (0, a0), the following property holds,

inf
u∈V(a)

Eγ(u) < 0 ≤ inf
u∈∂V(a)

Eγ(u). (2.10)

Proof. For any u ∈ ∂V(a), we have ‖∇u‖2L2 = r0. Thus, by (2.3) and Lemma 2.2, we have

Eγ(u) ≥ ‖∇u‖2L2 f (a, ‖∇u‖2L2) = r0 f (a, r0) ≥ r0 f (a0, r0) = 0. (2.11)

Now let u ∈ S (a) be arbitrary but fixed. We denote uλ(x) := λ
N
2 u(λx) for λ ∈ (0,∞). It is obvious that

uλ ∈ S (a) for any λ ∈ (0,∞). We set the map on (0,∞) by

Eγ(uλ) =
λ2

2
‖∇u‖2L2 −

γλσ

2

∫
RN

|u|2

|x|σ
dx −

λ
Nα
2

α + 2
‖u‖α+2

Lα+2 . (2.12)

Noticing that 0 < σ < 2, 2 < Nα
2 < 2N

N−2 , thus Eγ(uλ) < 0 and ‖∇uλ‖2L2 = λ2‖∇u‖2L2 < r0 for sufficiently
small λ > 0. The proof follows. �

Lemma 2.5. Let 4
N < α < 4

N−2 , r0 > 0 be determined as Lemma 2.2 and 0 < a < a0 be as in Lemma 2.4.
Then, there exists δ > 0 such that for any initial data ψ0 ∈ H1(RN) and inf

u∈M(a)
‖ψ0−u‖H1 < δ, the solution

ψ(t) of (1.1) with the initial data ψ0 exists globally.

Proof. Firstly, we denote the right hand of (2.10) by A. According to the continuity of energy
functional Eγ(u) with respect to u ∈ M(a), we deduce Eγ(u) = mγ(a, r0) < A and ‖∇u‖2L2 < r0.
Moreover, there exists δ > 0 such that for any ψ0 ∈ H1(RN) and ‖ψ0 − u‖H1 < δ, we have

Eγ(ψ0) < A and ‖∇ψ0‖
2
L2 < r0. (2.13)

Secondly, let us prove this result by contradiction. If not, there exists ψ0 ∈ H1(RN) such that ‖ψ0 −

u‖H1 < δ and the solution ψ(t) with an initial value of ψ0 blows up in finite time. By continuity, there
exists T1 > 0 such that ‖∇ψ(T1)‖2L2 > r0. We now assume the initial value ψ̃0 =

√
a

‖ψ0‖L2
ψ0. When δ > 0 is

sufficiently small, we have
Eγ(ψ̃0) < A and ψ̃0 ∈ S (a).

When
√

a < ‖ψ0‖L2 , ‖∇ψ̃0‖
2
L2 < ‖∇ψ0‖

2
L2 < r0. When

√
a > ‖ψ0‖L2 , considering 0 < a < a0, we have

‖∇ψ̃0‖
2
L2 < r0. This implies that ψ̃0 ∈ V(a). Since the solution of (1.1) is continuously dependent on

the initial data and ‖∇ψ(T1)‖2L2 > r0, there exists T2 > 0 such that ‖∇ψ̃(T2)‖2L2 > r0, where ψ̃(t) is the
solution of (1.1) that satisfies ψ̃(t)|t=0 = ψ̃0. We consequently deduce from the continuity that there
exists T3 > 0 such that ‖∇ψ̃(T3)‖2L2 = r0. This indicates that ψ̃(T3) ∈ ∂V(a). Then we infer from
Lemma 2.4 that A > Eγ(ψ̃0) > Eγ(ψ̃(T3)) ≥ inf

u∈∂V(a)
Eγ(u), which is a contradiction. The proof follows.

�

Lemma 2.6. It holds that
(i) a ∈ (0, a0), a 7→ mγ(a, r0) is a continuous mapping.
(ii) Let a ∈ (0, a0). For all µ ∈ (0, a), we have

mγ(a, r0) < mγ(µ, r0) + mγ(a − µ, r0).
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Proof. (i) Let a ∈ (0, a0) be arbitrary and {an}n≥1 ⊂ (0, a0) be such that an → a. According to the
definition of mγ(an, r0), we know that there exists un ∈ V(a) such that

Eγ(un) ≤ mγ(an, r0) + ε and Eγ(un) < 0 for any ε > 0 sufficiently small. (2.14)

We set vn :=
√

a
an

un and hence vn ∈ S (a). We find that vn ∈ V(a). Indeed, if an ≥ a, then

‖∇vn‖
2
L2 =

a
an
‖∇un‖

2
L2 ≤ ‖∇un‖

2
L2 < r0.

If an < a, by Lemma 2.2, (2.4) and (2.9) we have f (an, r) ≥ f (an, r0) ≥ f (a0, r0) = 0 for any r ∈
[ an

a r0, r0]. Indeed, since f (a, r) is a non-increasing function, then we have

f (an, r0) ≥ f (a0, r0) = 0. (2.15)

And then by direct calculations we have

f (an, r) ≥ f (an, r0). (2.16)

Hence, we deduce from (2.3) and (2.14) that f (an, ‖∇un‖
2
L2) < 0, thus ‖∇un‖

2
L2 <

an
a r0 and

‖∇vn‖
2
L2 =

a
an
‖∇un‖

2
L2 <

a
an

an

a
r0 = r0.

Since vn ∈ V(a) we can write

mγ(a, r0) ≤ Eγ(vn) = Eγ(un) + [Eγ(vn) − Eγ(un)],

where

Eγ(vn) − Eγ(un) =
1
2

(
a
an
− 1)‖∇un‖

2
L2 −

γ

2
(

a
an
− 1)

∫
RN

|un|
2

|x|σ
dx −

1
α + 2

[
(

a
an

)
α+2

2 − 1
]
‖un‖

α+2
Lα+2 .

Since ‖∇un‖
2
L2 < r0, also ‖un‖

α+2
Lα+2 and

∫
RN
|un |

2

|x|σ dx are uniformly bounded. Thus, we have

mγ(a, r0) ≤ Eγ(vn) = Eγ(un) + on(1) as n→ ∞. (2.17)

Combining (2.14) and (2.17), we get

mγ(a, r0) ≤ mγ(an, r0) + ε + on(1).

Now, let u ∈ V(a) be such that

Eγ(u) ≤ mγ(a, r0) + ε and Eγ(u) < 0.

Set un :=
√

an
a u and hence un ∈ S (an). Clearly, ‖∇u‖2L2 < r0 and an → a imply ‖∇un‖

2
L2 < r0 for n large

enough, so that un ∈ V(a). Also, Eγ(un)→ Eγ(u). We thus have

mγ(an, r0) ≤ Eγ(un) = Eγ(u) + [Eγ(un) − Eγ(u)] ≤ mγ(a, r0) + ε + on(1). (2.18)
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Therefore, since ε > 0 is arbitrary, we deduce that mγ(an, r0)→ mγ(a, r0). The point (i) follows.
(ii) Note that, fixed µ ∈ (0, a), it is sufficient to prove that the following holds

mγ(θµ, r0) < θmγ(µ, r0), ∀ θ ∈
(
1,

a
µ

]
. (2.19)

Indeed, if (2.19) holds, then we have

mγ(a, r0) <
a − µ

a
·

a
a − µ

mγ(a − µ, r0) +
µ

a
·

a
µ

mγ(µ, r0) = mγ(a − µ, r0) + mγ(µ, r0).

Next, we prove that (2.19) holds. According to the definition of mγ(µ, r0), we have that there exists
u ∈ V(µ) such that

Eγ(u) ≤ mγ(µ, r0) + ε and Eγ(u) < 0 for any ε > 0 sufficiently small. (2.20)

By (2.9), f (a, r) ≥ 0 for any r ∈ [µa r0, r0]. Hence, we can deduce from (2.3) and (2.20) that

‖∇u‖2L2 <
µ

a
r0. (2.21)

Now we set v(x) := u(θ−
1
N x). On the one hand, we note that ‖v‖2L2 = θ‖u‖2L2 = θµ and also, because

of (2.21), ‖∇v‖2L2 = θ‖∇u‖2L2 < r0. Thus v ∈ V(θµ). On the other hand, we obtain from (2.2) that

γ

∫
RN

|u(x)|2

|x|σ
dx ≤ γC1µ

2−σ
2 ‖∇u‖σL2 < γ0C1a

2−σ
2 ‖∇u‖σL2 ,

and it follows easily that

‖∇u‖2L2 − γ

∫
RN

|u(x)|2

|x|σ
dx > ‖∇u‖2L2 − γ0C1a

2−σ
2 ‖∇u‖σL2 > 0

for 0 < γ < γ0 and γ0 small sufficiently. We can obtain that

mγ(θµ, r0) ≤ lim inf
n→∞

Eγ(v)

= lim inf
n→∞

(
θEγ(u) + ‖∇u‖2L2(

θ1− σN

2
−
θ

2
) − γ(

θ1− σN

2
−
θ

2
)
∫
RN

|u(x)|2

|x|σ
dx

)
= θmγ(µ, r0) + (

θ1− σN

2
−
θ

2
) lim inf

n→∞

(
‖∇u‖2L2 − γ

∫
RN

|u(x)|2

|x|σ
dx

)
< θmγ(µ, r0).

�

Lemma 2.7. Let {vn}n≥1 ⊂ B(r0) be such that
∫
RN
|vn |

2

|x|σ dx→ 0. Then, there exist a β0 > 0 such that

Eγ(vn) ≥ β0‖∇vn‖
2
L2 + on(1).
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Proof. Indeed, using the Sobolev inequality, we obtain that

Eγ(vn) =
1
2
‖∇vn‖

2
L2 −

1
α + 2

‖vn‖
α+2
Lα+2 + on(1)

≥‖∇vn‖
2
L2

(
1
2
−

C(α)
α + 2

a
η2
2 ra

η3
2

)
+ on(1).

Now, since f (a0, r0) = 0, we have

β0 :=
1
2
−

C(α)
α + 2

a
η2
2

0 r0
η3
2 =

γC1

2
a
η0
2

0 r
η1
2

0 > 0.

�

Lemma 2.8. For any a ∈ (0, a0), let {un}n≥1 ⊂ B(r0) be such that ‖un‖
2
L2 → a and Eγ(un) → mγ(a, r0).

Then, there exists a β1 > 0 and a sequence {yn}n≥1 ⊂ R
N such that∫

B(yn,R)
|un|

2dx ≥ β1 > 0, for some R > 0. (2.22)

Proof. We assume by contradiction that (2.22) does not hold. Since {un}n≥1 ⊂ B(r0) and ‖un‖
2
L2 → a,

the sequence {un}n≥1 is bounded in H1(RN). From Lemma I.1 in [21] and since 4
N +2 < α+2 < 2N

N−2 , we
deduce that ‖un‖Lα+2 → 0 as n→ ∞. At this point, Lemma 2.7 implies Eγ(un) ≥ on(1). This contradicts
the fact that mγ(a, r0) < 0 and the lemma follows. �

Theorem 2.9. For any a ∈ (0, a0), if {un}n≥1 ⊂ B(r0) is such that ‖un‖
2
L2 → a and Eγ(un) → mγ(a, r0)

then, up to translation, un → u in H1(RN).

Proof. Let {un}n≥1 ⊂ B(r0) be a minimizing sequence of the energy functional Eγ(u), that is,

‖un‖
2
L2 = a and lim

n→∞
Eγ(un) = mγ(a, r0).

By similar proof as [23], we known that {un}n≥1 is bounded in H1(RN). By Lemma 2.6, Lemma 2.8 and
Rellich compactness theorem, there exist sequences {unk}k≥1 ⊂ H1(RN) and {ynk}k≥1 ⊂ R

N such that for
any ε > 0, there exists R(ε) > 0 such that for all k ≥ 1,∫

B(ynk ,R(ε))
|unk |

2dx ≥ β2 − ε > 0. (2.23)

Denote ũnk(·) = unk(· + ynk), then there exists ũ such that ũnk ⇀ ũ weakly in H1(RN), ũnk → ũ strongly
in Lr

loc(R
N) with r ∈ [2, 2N

N−2 ), combining with (2.23) we have∫
B(0,R(ε))

|ũ|2dx ≥ β2 − ε > 0.

Thus
∫
RN |ũ|2dx = β2. Indeed, we assume by contradiction that

∫
RN |ũ|2dx = β̄2 < β2. According to

Brézis-Lieb Lemma and ũnk = (ũnk − ũ) + ũ, we have

‖ũnk‖
2
H1 = ‖ũnk − ũ‖2H1 + ‖ũ‖2H1 + on(1),
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‖ũnk‖
q
Lq = ‖ũnk − ũ‖qLq + ‖ũ‖qLq + on(1), 1 ≤ q < ∞,

‖ũnk‖
p+2
Lp+2 = ‖ũnk − ũ‖p+2

Lp+2 + ‖ũ‖p+2
Lp+2 + on(1),

∫
RN

|ũnk |
2

|x|σ
dx =

∫
RN

|ũnk − ũ|2

|x|σ
dx +

∫
RN

|ũ|2

|x|σ
dx + on(1).

Then,
E(ũnk) = E(ũnk − ũ) + E(ũ) + on(1).

Hence,
mγ(β2, r0) ≥ mγ(β2 − β̄2, r0) + mγ(β̄2, r0),

which contradicts Lemma 2.6. Thus
∫
RN |ũ|2dx = β2, i.e., ũnk → ũ strongly in L2(RN). By the Gagliardo-

Nirenberg inequality, ũnk → ũ strongly in Ls(RN), where s ∈ [2, 2N
N−2 ). Next, our aim is to show that

{ynk}k≥1 ⊂ R
N is bounded. If it was not the case, we deduce that∫

RN

|unk |
2

|x|σ
dx =

∫
RN

|ũnk |
2

|x + ynk |
σ

dx→ 0 as k→ ∞.

Hence lim
n→∞

Eγ(unk) = lim
n→∞

E∞γ (unk), where E∞γ (unk) is the corresponding energy functional of the

sequence {unk}k≥1 ⊂ H1(RN) via translation transformation. On the other hand, we know that
lim
n→∞

E∞γ (un) is attained by a nontrivial function ur0 ∈ B(r0). Hence,

lim
k→∞

E∞γ (unk) = lim
n→∞

E∞γ (ũnk)

= lim
k→∞

1
2

∫
RN
|∇ũnk |

2dx − lim
k→∞

1
α + 2

∫
RN
|ũnk |

α+2dx

≥
1
2

∫
RN
|∇ũ|2dx −

1
α + 2

∫
RN
|ũ|α+2dx.

According to the definition of E∞γ (unk), we see that ũ is a minimizer of lim
k→∞

E∞γ (unk). Consequently,

lim
k→∞

Eγ(unk) < lim
k→∞

E∞γ (unk) −
∫
RN

|ur0 |
2

|x|σ
dx < lim

k→∞
E∞γ (unk),

which contradicts lim
k→∞

Eγ(unk) ≥ lim
k→∞

E∞γ (unk). Thus, {ynk}k≥1 ⊂ R
N is bounded. We can deduce, up to

subsequences, lim
k→∞

ynk = y0 for some y0 ∈ R
N . Consequently,

‖unk(x) − ũ(x − y0)‖Ls ≤‖unk(x) − ũ(x − ynk)‖Ls + ‖ũ(x − ynk) − ũ(x − y0)‖Ls

=‖unk(x + ynk) − ũ(x)‖Ls + ‖ũ(x + y0 − ynk) − ũ(x)‖Ls

→ 0 (2.24)
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as k → ∞ for any s ∈ [2, 2N
N−2 ), that is, unk converges strongly to ũ(x − y0) in Ls(RN) for s ∈ [2, 2N

N−2 ).
We denote u(x) = ũ(x − y0). Hence,

lim
k→∞

Eγ(unk) ≥
1
2

∫
RN
|∇u|2dx −

γ

2

∫
RN

|u|2

|x|σ
dx −

1
α + 2

∫
RN
|u|α+2dx.

We see that Eγ(u) = mγ(a, r0) and hence unk → u in H1(RN).
�

Proof of Theorem 2.3. The existence of γ0 and a minimizer for Eγ(u) on V(a) were proved in Lemma
2.6, Lemma 2.7 and Theorem 2.9.

3. Orbital stability

Proof of Theorem 1.3. (i) The property thatM(a) ⊂ V(a) is non-empty follows from Theorem 2.3.
(ii) We will show that M(a) is orbitally stable. Firstly, we note that the solution ψ of (1.1) exists

globally by Lemma 2.5. Now we suppose by contradiction that there exist ε0 > 0, a sequence of initial
data {ψ0,n}n≥1 ⊂ H1(RN) and a sequence {tn}n≥1 ⊂ R such that for all n ≥ 1,

inf
u∈M(a)

‖ψ0,n − u‖H1 <
1
n
, inf

u∈M(a)
‖ψn(tn) − u‖H1 ≥ ε0, (3.1)

where ψn(t) is the solution to (1.1) with initial data ψ0,n. Next, we claim that there exists v ∈ M(a) such
that

lim
n→∞
‖ψ0,n − v‖H1 = 0.

Indeed, by (3.1), we see that for each n ≥ 1, there exists vn ∈ V(a) such that

‖ψ0,n − vn‖H1 <
2
n
. (3.2)

Since {vn}n≥1 ⊂ M(a) is a minimizing sequence of (1.7) and by the same argument as in Lemma 2.3,
there exists v ∈ M(a) such that

lim
n→∞
‖vn − v‖H1 = 0. (3.3)

By (3.2) and (3.3), the claim follows. And then, due to v ∈ V(a), we have ψ̃n =
√

aψn(tn)
‖ψn(tn)‖L2

∈ V(a) and

lim
n→∞

Eγ(ψ̃n) = lim
n→∞

Eγ(ψn(tn)) = lim
n→∞

Eγ(ψ0,n) = Eγ(v) = mγ(a, r0),

which implies that {ψ̃n}n≥1 is a minimizing sequence for (1.7). Thanks to the compactness of all
minimizing sequence of (1.7), there is a ũ ∈ V(a) satisfies

ψ̃n → ũ in H1(RN).

Moreover, by the definition of ψ̃n, it follows easily that

ψ̃n − ψn(tn)→ 0 in H1(RN).

Consequently, we have
ψn(tn)→ ũ in H1(RN),

which contradicts (3.1). The proof is now complete.
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4. Conclusions

In this work, we study the stability of the set of energy minimizers in the mass supercritical case.
In the mass supercritical case, the energy functional is unbounded from below on S (a). Thus, we
consider the further constrained minimization problem to study the existence and stability of standing
waves for (1.1). And, the energy functional is not invariant under the scaling transform due to inverse-
power potentials γ|x|−σu. It is intrinsically difficult for us to prove the compactness of minimizing
sequences. By a rather delicate analysis, we can overcome this difficulty by proving the boundedness
of any translation sequence.
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