In this paper, we consider a two-times nonlinear fractional differential inequality involving both Hadamard-Caputo and Caputo fractional derivatives of different orders, with a singular potential term. We obtain sufficient criteria depending on the parameters of the problem, for which a global solution does not exist. Some examples are provided to support our main results.
Citation: Ibtehal Alazman, Mohamed Jleli, Bessem Samet. On the absence of global solutions to two-times-fractional differential inequalities involving Hadamard-Caputo and Caputo fractional derivatives[J]. AIMS Mathematics, 2022, 7(4): 5830-5843. doi: 10.3934/math.2022323
In this paper, we consider a two-times nonlinear fractional differential inequality involving both Hadamard-Caputo and Caputo fractional derivatives of different orders, with a singular potential term. We obtain sufficient criteria depending on the parameters of the problem, for which a global solution does not exist. Some examples are provided to support our main results.
[1] | R. P. Agarwal, M. Benchohra, S. A. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. https://doi.org/10.1007/s10440-008-9356-6 doi: 10.1007/s10440-008-9356-6 |
[2] | O. P. Agrawal, Generalized multiparameters fractional variational calculus, Int. J. Differ. Equ., 2012 (2012), 1–32. https://doi.org/10.1155/2012/521750 doi: 10.1155/2012/521750 |
[3] | A. Alsaedi, M. S. Alhothuali, B. Ahmad, S. Kerbal, M. Kirane, Nonlinear fractional differential equations of Sobolev type, Math. Method. Appl. Sci., 37 (2014), 2009–2016. https://doi.org/10.1002/mma.2954 doi: 10.1002/mma.2954 |
[4] | S. M. Cvetićanin, D. Zorica, M. R. Rapaić, Generalized time-fractional telegrapher's equation in transmission line modeling, Nonlinear Dynam., 88 (2017), 1453–1472. https://doi.org/10.1007/s11071-016-3322-z doi: 10.1007/s11071-016-3322-z |
[5] | C. Dineshkumar, B. Udhayakumar, New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential systems, Numer. Meth. Part. D. E., 37 (2020), 1072–1090. https://doi.org/10.1002/num.22567 doi: 10.1002/num.22567 |
[6] | V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. https://doi.org/10.1016/j.cam.2007.08.011 doi: 10.1016/j.cam.2007.08.011 |
[7] | F. Gómez, J. Rosales, M. Guia, RLC electrical circuit of non-integer order, Open Phys., 11 (2013), 1361–1365. https://doi.org/10.2478/s11534-013-0265-6 doi: 10.2478/s11534-013-0265-6 |
[8] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[9] | K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Soliton. Fract., 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2021.111264 doi: 10.1016/j.chaos.2021.111264 |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006. |
[11] | M. Kirane, A. Kadem, A. Debbouche, Blowing-up solutions to two-times fractional differential equations, Math. Nachr., 286 (2013), 1797–1804. https://doi.org/10.1002/mana.201200047 doi: 10.1002/mana.201200047 |
[12] | M. Kirane, Y. Laskri, N. E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl., 312 (2005), 488–501. https://doi.org/10.1016/j.jmaa.2005.03.054 doi: 10.1016/j.jmaa.2005.03.054 |
[13] | M. Kirane, N. E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131–142. |
[14] | J. Korbel, Yu. Luchko, Modeling of financial processes with a space-time fractional diffusion equation of varying order, Fract. Calc. Appl. Anal., 19 (2016), 1414–1433. https://doi.org/10.1515/fca-2016-0073 doi: 10.1515/fca-2016-0073 |
[15] | F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23–28. https://doi.org/10.1016/0893-9659(96)00089-4 doi: 10.1016/0893-9659(96)00089-4 |
[16] | E. Mitidieri, S. I. Pohozaev, Nonexistence of weak solutions for some degenerate and singular hyperbolic problems on $\mathbb{R}^N$, P. Steklov I. Math., 232 (2001), 240–259. |
[17] | S. Momani, Z. M. Odibat, Fractional Green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics, J. Appl. Math. Comput., 24 (2007), 167–178. https://doi.org/10.1007/BF02832308 doi: 10.1007/BF02832308 |
[18] | O. Narayan, J. Roychowdhury, Analyzing oscillators using multitime PDEs, IEEE T. Circuits-I, 50 (2003), 894–903. https://doi.org/10.1109/TCSI.2003.813976 doi: 10.1109/TCSI.2003.813976 |
[19] | K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Math. Method. Appl. Sci., 44 (2021), 13615–13632. https://doi.org/10.1002/mma.7647 doi: 10.1002/mma.7647 |
[20] | R. Pulch, Initial-boundary value problems of warped MPDAEs including minimisation criteria, Math. Comput. Simul., 79 (2008), 117–132. https://doi.org/10.1016/j.matcom.2007.10.006 doi: 10.1016/j.matcom.2007.10.006 |
[21] | R. Pulch, Variational methods for solving warped multirate partial differential algebraic equations, SIAM J. Sci. Comput., 31 (2008), 1016–1034. https://doi.org/ 10.1137/050638886 doi: 10.1137/050638886 |
[22] | D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15–35. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0 |
[23] | C. Zhai, W. Wang, Solutions for a system of Hadamard fractional differential equations with integral conditions, Numer. Func. Anal. Opt., 41 (2020), 209–229. https://doi.org/10.1080/01630563.2019.1620771 doi: 10.1080/01630563.2019.1620771 |
[24] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Elsevier, New York, 2015. |