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1. Introduction

Time-fractional differential equations arise in the mathematical modeling of a variety of real-world
phenomena in many areas of sciences and engineering, such as elasticity, heat transfer, circuits systems,
continuum mechanics, fluid mechanics, wave theory, etc. For more details, we refer the reader to
[4,6-8,14,15,17,24] and the references therein. Consequently, the study of time-fractional differential
equations attracted much attention of many researchers (see e.g. [1,5,9,10,19,22,23] and the references
therein).

Multi-time differential equations arise, for example, in analyzing frequency and amplitude
modulation in oscillators, see Narayan and Roychowdhury [18]. Some methods for solving Multi-
time differential equations can be found in [20, 21].

The study of blowing-up solutions to time-fractional differential equations was initiated by Kirane
and his collaborators, see e.g. [3, 11-13]. In particular, Kirane et al. [11] considered the two-times
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fractional differential equation

u(t, s) + pP

CnHa
D 0ls

Olt |u|m(t’ s) = |u|p(ta s)’ t’ s > 0’

(1.1)
u(0, s) = up(s), u(t,0) = u (r), t,s>0,
where p,m > 1,0 < a,8 < 1, CDgn
time-variable ¢, and CDng is the Caputo fractional derivative of order S with respect to the second time-
variable s. Namely, the authors provided sufficient conditions for which any solution to (1.1) blows-up
in a finite time. In the same reference, the authors extended their study to the case of systems.
In this paper, we investigate the nonexistence of global solutions to two-times-fractional differential
inequalities of the form

is the Caputo fractional derivative of order a with respect to the first

(on
HCDzltu(t, s) + CDglslulm(t, $) > (s —a)” (ln é) [ulP(t,s), t,s>a,

(1.2)
u(a, s) = ug(s), u(t,a) = u(t), t,s>a,

wherep>1,m>1,y,0eR,a>0,0<a,B<1, HCDZ‘ . 1s the Hadamard-Caputo fractional derivative
of order @ with respect to the first time-variable ¢, and CDﬁ s 18 the Caputo fractional derivative of
order 8 with respect to the second time-variable s. Using the test function method (see e.g. [16]) and
a judicious choice of a test function, we establish sufficient conditions ensuring the nonexistence of
global solutions to (1.2). Our obtained conditions depend on the parameters «, 3, p, m,y, o, and the
initial values.

Our motivation for considering problems of type (1.2) is to study the combination effect of the
two fractional derivatives of different nature HCDgl , and CD‘; ,» on the nonexistence of global solutions
to (1.2). As far as we know, the study of nonexistence of global solutions for time fractional differential
equations (or inequalities) involving both Hadamard-Caputo and Caputo fractional derivatives, was
never considered in the literature.

The rest of the paper is organized as follows: In Section 2, we recall some concepts from fractional
calculus and provide some useful lemmas. In Section 3, we state our main results and provide some
examples. Section 4 is devoted to the proofs of our main results.

2. Some preliminaries

Let a,T € R be such that 0 < a < T. The left-sided and right-sided Riemann-Liouville fractional
integrals of order 6 > 0 of a function ¢ € L!([a, T)), are defined respectively by (see [10])

1

0 -
(1)) = o)

f (t -1 ') dr

and ,
1
L) = T f, (r - '9(1) dr,

for almost everywhere ¢ € [a, T], where I is the Gamma function.
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Notice that, if ¢ € C([a, T1), then I99, I89 € C([a, T]) with
(I°9)(a) = (15:9)(T) = 0. 2.1)

The Caputo fractional derivative of order 6 € (0, 1) of a function ¢ € AC([a, o)), 1s defined by
(see [10])
1

C o _ 1-6 q _
DL = 000 = =

!
f (t— 1) (1) d,
for almost everywhere ¢ > a.

Lemma 2.1. [see [10]] Letk > 0, p,q > 1, andi+é <1l+k(p#1,q#1,inthe case%+é =1+«x).
Letd € LP(la, T and w € Li([a, T]). Then

T T
f (LN (Ow(t) dt = f MO Lyw)(t) dt.

The left-sided and right-sided Hadamard fractional integrals of order 6 > 0O of a function ¢ €
L'([a, TY), are defined respectively by (see [10])

0 1 A 1
N0 = s f (m;) 0(r)- dr
and ,
p 3 1 T\0-1 1
U0 = 1 f, (ln ;) 8(r)—dr,

for almost everywhere ¢ € [a, T].
Notice that, if # € C([a, T1), then J939, J99 € C([a, T]) with

(Ja9)(a) = (J79)(T) = 0. (2.2)

The Hadamard-Caputo fractional derivative of order § € (0, 1) of a function ¢ € AC([a, >)), is
defined by (see [2])

HE Do) = (J1959) (1) = —— f t (ln f)_a 59(0)~ dr.
¢ ¢ ra-oJ,\ T’

for almost everywhere ¢ > a, where
o(t) = 1 (v).

We have the following integration by parts rule.

Lemma 2.2. Let k > 0, p,g > 1, and 5 + - < 1L+« (p # 1, q # 1, inthe case ; + ; = 1 +«). If
Poexp € LP([Ina,InT]) and w o exp € L([Ina,InT]), then

r 1 T 1
f (Jgﬁ)(t)w(t);dt: f ﬂ(t)(ng)(t);dt.

AIMS Mathematics Volume 7, Issue 4, 5830-5843.



5833

Proof. Using the change of variable x = In 7, we obtain

1 A 1
%L(ln;) ﬂ(T);dT

1 In ¢

m Ina

(Ja)(0)

(Inf — x)*' (¥ o exp)(x) dx,

that is,
(@) = (I},

Ina

¥ o exp) (Int).

Similarly, we have
(Jew)(t) = (I}, 7w o exp) (In?).
By (2.3), we obtain
T 1 T 1
fa (Jgﬂ)(t)w(t); dt = fa (I}, ;9 o exp) (In t)w(t); dt.

Using the change of variable x = In¢, we get

T InT
f (Jgﬂ)(t)w(t)% dt = f (I}, ;U o exp) (x)(w o exp)(x) dx.
a 1

na

Since # o exp € LP([Ina,InT]) and w o exp € L([Ina,InT]), by Lemma 2.1, we deduce that

InT

T
f (Jgﬁ)(t)w(t)% dt = (¥ 0 exp)(x) (I}, 7w o exp) (x) dx.

Ina

Using again the change of variable x = In ¢, there holds

T ! r |
f (Jgﬁ)(t)w(t); dt = f 9(t) (I}, 7w o exp) (In t); dt.
Then, by (2.4), the desired result follows.

By elementary calculations, we obtain the following properties.
Lemma 2.3. For sufficiently large A, let

¢1(2) = (ln g)_ﬂ (lng)l, a<t<T.

Let k € (0,1). Then

o« M) (wf"

Lemma 2.4. For sufficiently large A, let
$($) =T —a)y (T -5, a<s<T.
Let k € (0,1). Then

« _ _T@+D VAT oA

15620 = oo (T =) (T = 5,
I'A+1

gy (s) = ——AFD g pyaep _ gy,

T+ Q)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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3. Main results

First, let us define global solutions to (1.2). To do this, we need to introduce the functional space

Xo = {u € C([a, ) X [a,0)) : u(-, s) € AC([a, o)), [ul"(1,-) € AC([a, »))}.

We say that u is a global solution to (1.2), if u € X, and u satisfies the fractional differential

inequality
HC
D le

u(t, s) + g lul"(t, s) > (s — a)” (ln 2)0 lulP(t, s)

als
for almost everywhere ¢, s > a, as well as the initial conditions
l/l(a, S) = MO(S), M(t, Cl) = l/t](t), t’ s> a.

Now, we state our main results.

Theorem 3.1. Let ug € L'([a, ©)), uy € L"([a, o), + d1), and uy # 0. Let

1 —
0<p<—<1, y>max{m
m

m,l’l’l(ﬂ'ﬁ' 1) - l}ﬁ

If
mmax{y+1l,0+1}<p<1 +%,
then, for all a € (0, 1), (1.2) admits no global solution.
Remark 3.1. Notice that by (3.1), the set of exponents p satisfying (3.2) is nonempty.

Theorem 3.2. Let uy € L'([a, ©)), uy € L"([a, o), + d1), and u; # 0. Let

1 1 - 1)(1 -
O0<B<—<1, 1-—<ax<l, >w—a
m

o
m 1 —mp
If
ﬁmax{lm__m;,m(0'+ 1) - 1} <y< %8
and y
= 1 -,
p +,3

then (1.2) admits no global solution.
Remark 3.2. Notice that by (3.3), the set of real numbers 7y satisfying (3.4) is nonempty.
We illustrate our obtained results by the following examples.

Example 3.1. Consider the fractional differential inequality

1 -1
HCDgltu(t, s) + CDglsuz(t, §)> (s —a) (ln é) [ulP(t,s), t,s>a,

u(a,s) = (1 + )7, u(t,a) = exp(-1), t,s>a,

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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where a > 0 and 0 < a < 1. Observe that (3.6) is a special case of (1.2) with

1
B= T m=2, c==1, y=1, uy(s) = (1 + )", u1(t) = exp(-1).
Moreover, we have
1 1 1 -1 2,0 1
O<ﬁzz<§:%<1, max{lm_—mﬁ,m(0'+1)—1},3:%:§<y:1,

and uy € L'([a, o)), u; € L"([a, ), } dt). Hence, condition (3.1) is satisfied. Then, by Theorem 3.1,

we deduce that, if

mnmﬂy+ha+l}<p<1+%,

that is,
4<p<3,

then (3.6) admits no global solution.
Example 3.2. Consider the fractional differential inequality

3 1 -1
HCD} u(t, ) + D2 ul(t ) 2 (s —a)? (InL) " ui(t,s), t.s>a,
(3.7)

u(a,s) = (1 +s2)7", u(t,a) = exp(-1), t,s>a,

where a > 0. Then (3.7) is a special case of (1.2) with

3 1 1 1 3

@= B= 5 m= I, o= Y= P35 uo(s) = (1 + 57", uy (1) = exp(-1).

On the other hand, we have
1 1 1 3 1 3 m-D{1-a)
0 ==—<l=—, 1-—=0 =-<1, =——>——=—" —q,

<p 2< p p” <a 4< o 2> 1 1= mp a

which shows that condition (3.3) is satisfied. Moreover, we have
m— 1 I 1 (c+ap 3 y
Bmax{l—mﬁ’m(a ) } I A P

which shows that conditions (3.4) and (3.5) are satisfied. Then, by Theorem 3.2, we deduce that (3.7)
admits no global solution.
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4. Proofs of the main results

In this section, C denotes a positive constant independent on 7', whose value may change from line
to line.

Proof of Theorem 3.1. Suppose that u € X, is a global solution to (1.2). For sufficiently large T and A,
let

o(t,5) = g1(DP2(s), a<ts<T,

where ¢, and ¢, are defined respectively by (2.5) and (2.8). Multiplying the inequality in (1.2) by %go
and integrating over Qr := (a, T) X (a, T), we obtain

f(s—a)y(ln ) lul” o(t, s) dtds
Qr

| 4.1)
< f HCDZVM o(t, s); dtds + f CDglslulm o(t, s); dtds.
QT Q'T

On the other hand, using Lemma 2.2, integrating by parts, using the initial conditions, and taking in
consideration (2.2), we obtain

r 1
f HCfoltu o(t, s)— dt

’ ou
:f (J‘ilt(ll‘—)(l $)e(t, s) dt
T
P
) f a_btt(t’ $) (1) &, ) dt

l-a
= [ut, ) (5°0) . 9)] - " S)M(t, 5)dt
| t=a P ot

Jl QSO)

l1-a ! 8( T|f
= —uo(s) (J1,"¢) (@, 5) - f u(t, s)———=(t, ) dr.

Integrating over (a, T'), we get

1
f HCDZ“M o(t, s)—dtds
Qr t

: o(1r) 42)
=— f uy(s) (JEQSD) (a,s)ds — f u(t, s)a—(t s)dtds.
a Qr

Similarly, using Lemma 2.1, integrating by parts, using the initial conditions, and taking in

AIMS Mathematics Volume 7, Issue 4, 5830-5843.
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consideration (2.1), we obtain

tf D lul" (e, 5)ds
T m
= f (1;|;ﬁM(z, s)) o(t, s)ds

[ ) s

a (1P
:[Wl’"(t s)(T| sO)(t s) f lul™ (2, 5) ( 'S )(z s)ds

Ilﬁgo
= (O (1} a@—fhaa>(”)unm

Integrating over (a, T'), there holds

1
f CD’jlslul”’ o(t, s)—dtds
Qr t

@%)
f 1" (I 7) . a) dr - f ™ (1, 5)———2(t, s) dt ds.

It follows from (4.1)—(4.3) that

(s—a)y(ln ) s, s) dt ds
Qr

T
f uo(s) (J157¢) (a. ) ds + f " (17 ) (2, a) dt

l-a 1-B
f lul | ———= 8(J ‘) drds + f lul" —a(IT'S ‘)
Q.T t Q'T

0s
On the other hand, by Young’s inequality, we have

f Jul 21¢)
Qr ot
1 1\* 1
<5 | G-ay (m —) (1, 5)= di ds
Qr a t

-0

-y t\r1 =
+Cf tvll(s—a)ﬁl(ln—) " oT(t, 5)
Qr a

1
—dt ds.
t

dtds

p

8(]1 “go)

T\t

dtds.
ot S

AIMS Mathematics
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Similarly, since p > m, we have
1-8
m a (ITls (p)
| | ———
Qr

0s
Slf (s—a)y(ln ) lul? (2, s) dtds
Qr

2
o(Irly)
as

1
—dt ds
t

P
m

—om p=

1 —ym t —m —m
+Cf —(s—a)rn (ln —)p prm(t,s)
Qr t a

Hence, combining (4.4)—(4.6), we deduce that

dt ds.

T
f uo(s) (J157¢) (a, ) ds + f " (IFe) (2, a) dr < C(K; + K»),

where »
e a(Ji-ap) |
-y t\r- - Y
K, :f tﬂll(s—a)vl(ln —) "o, ) 95¢) di ds
Qr a 8t
and »
_ B p-m
1 —ym t p:’: —m 8 I Ky ()0
K, :f —(s—a)m(ln —) o7 (1, 5) 2(17e) dt ds.
o t a 0s

By the definition of the function ¢, we have

(J7:7¢) (@, 9) = ¢a(s) (T3¢ ) (@),

Thus, using (2.6), we obtain
- T l-a
(77570 (a. 5) = Coa(s) (ln E) .

Integrating over (a, T), we get

T T I-a T
f wo(s) (74°9) (@, s ds = € (1n = f uo(s)(T — ay (T — s)'ds.

Similarly, by the definition of the function ¢, we have

(7). ) = 1) (17 (@),

Thus, using (2.9), we obtain
(In7e) (t,a) = Co1 (T - a)' .
Integrating over (a, T'), we get

- A

T\' 1
[ wor @z eataz=ca-a [Cwor(D) () La

(4.6)

4.7)

(4.8)

4.9)
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Combining (4.8) with (4.9), there holds
T T . 1
f uo(s) (1) (a, $) ds + f i@ (Ip0¢) @t.a) di

1-a T
_C (ln Z) f wo($)(T — ay (T — s)'ds
a a
-1 A 1

L C(T —a) P fuT 1, ()" (1n g) (ln %) ~dr

Since uy € L'([a, 0)), u; € L™([a, o), % dt), and u; # 0, by the dominated convergence theorem, we
deduce that for sufficiently large 7',

T T
_ 1
[ o @) @sds+ [ wor (i) e a
a a (4.10)

00 1
> C(T - a)l-ﬂf |u1(t)|m; dt.

Now, we shall estimate the terms K;, i = 1,2. By the definition of the function ¢, the term K; can
be written as

T -y T t\r1 =L ’
Klz( f <s_a)p-.¢2(s>ds)( f 1 () o 0|0

Next, by (2.8), we obtain

& dt). (4.11)

T
(T — a)_/lf (s —a)r (T — s)'ds

T Y
< f(s—a)ﬂ-'ds.

On the other hand, by (3.1) and (3.2), it is clear that y < p — 1. Thus, we deduce that

T i
f (s —a)7Ty(s)ds

T
f (s —a)T1¢ga(s)ds < C(T — a)' 77, (4.12)

By (2.5) and (2.7), we have

! L ! p%{rl p_fl 1-a ! %
f; £ (111 5) 1 l(t)‘(JTlt ¢1) €3] dt
A

T\ (T TV a1l
:(ln—) f(ln—) (ln—)P —dt
a . t a t
T\ (T =
s(ln—) lf (1n5) "l
a 4 a t

Notice that by (3.1) and (3.2), we have o < p — 1. Thus, we get

fa e (ln 2) {’%ll(t)\(fﬁa‘ﬁl)/ (”'ppl di 4.13)

1— ap+o

T =
SC(ln—) "
a

AIMS Mathematics Volume 7, Issue 4, 5830-5843.
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Hence, it follows from (4.11)—(4.13) that

ap+o

ey T
K, <C(T —a) T (ln —) .
a

Similarly, we can write the term K, as

AV -
L R

By (2.5), we have

p— n )

T T\ (T 25 T\ 1
f—(lnf) oy (m-) f(lni) (m-) Zdr
L t\ a al J, a t] ¢
T —am
[ L
. a

Notice that by (3.2), we have om < p —m. Thus, we get

IA

—om 1

1 = T\'"pn
f—(lnﬁ) ¢1(t)dt$C(ln—) .
. t\ a a

On the other hand, by (2.8) and (2.10), we have

T
f (s =7 7" (9)|(11,762) )

T Cm
=(T - a)—ﬂf (T — s)"7(s — a)yin ds

p m

T
<-at [ G- as

Notice that by (3.2), we have p > m(y + 1). Therefore, we obtain

T -m
f (s —a)rn f’"(S)‘( ™ ¢z) (5)

Combining (4.16) with (4.17), there holds

1- yn+ﬁp

7ds<C(T—a) .

1—-am

1 ym+Bp

T p—-m
KZSC(ln—) (T —a) .
a

Hence, it follows from (4.14) and (4.18) that

1= ym+Bp

T l_05+o— T 1_%
K1+K2£C[(ln ) (T —a)' p1+(ln—) (T—a)‘pm},
a a

Thus, by (4.7), (4.10), and (4.19), we deduce that

® 1
f |M1(l)|m— dt

T 1_“:“7 1_127'7" _ ym+pp
<C (ln ) (T—a)ﬂw+(1n ) (T — a5 |
a

AIMS Mathematics Volume 7, Issue 4,
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(4.17)
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(4.19)
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Notice that by (3.1) and (3.2), we have

+
Y ym ﬁp<

B - <0, B- 0.
p-1 p-m
Hence, passing to the limit as T — oo in (4.20), we obtain a contradiction with u; # 0.
Consequently, (1.2) admits no global solution. The proof is completed. m|

Proof of Theorem 3.2. Suppose that u € X, is a global solution to (1.2). Notice that in the proof of
Theorem 3.1, to obtain (4.20), we used that

p>m>1, p>c+1, p>mo+1), p>mly+1).

On the other hand, by (3.3)—(3.5), it can be easily seen that the above conditions are satisfied.
Thus, (4.20) holds. Hence, taking p = 1 + /Z¥ in (4.20), we obtain

o 1 T\~ %7 T\'~5n yisp

f @O~ di < C [(m —) ; (ln —) (T - a5 |. @21)

a t a a

On the other hand, by (3.3)—(3.5), we have
+ +
|_APET o YMASP
p-1 p—m

Hence, passing to the limit as 7 — oo in (4.21), we obtain a contradiction with u#; # 0. This shows
that (1.2) admits no global solution. The proof is completed. O

5. Conclusions

The two-times fractional differential inequality (1.2) is investigated. Namely, using the test function
method and a judicious choice of a test function, sufficient conditions ensuring the nonexistence of
global solutions to (1.2) are obtained. Two cases are discussed separately: 1 < p < 1 + /Zg (see
Theorem 3.1) and p = 1 + % (see Theorem 3.2). In the first case, no assumption is imposed on the
fractional order a € (0, 1) of the Hadamard-Caputo fractional derivative, while in the second case, it is
supposed that o > 1 — % About the initial conditions, in both cases, it is assumed that u, € L'([a, o)),
uy € L"([a, ), 1 dt), and u; % 0.

Finally, it would be interesting to extend this study to two-times fractional evolution equations. For
instance, the tow-times fractional semi-linear heat equation

o
1D u(t, 5, %) + Df lul"(t, 5, %) > (s — @)’ (In &) ul(t,5,%), t,5>a, xeRY,

u(a, s, x) = uo(s, x), u(t,a, x) = uy(t,x), t,s>a, xeR",

deserves to be studied.
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