Research article

The q-WZ pairs and divisibility properties of certain polynomials

  • Received: 07 October 2021 Revised: 05 December 2021 Accepted: 06 December 2021 Published: 15 December 2021
  • MSC : 11B65, 05A10, 05A30

  • Using the q-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some q-congruences obtained by Guo earlier, or q-analogues of some congruences of Sun. For example, we prove that, for n1 and 0jn, the following two polynomials

    nk=j(1)k[3k2j+1][2k2jk](q;q2)k(q;q2)kj(q;q)3n(q;q)k(q2;q2)kj,nk=j(1)nkq(kj)2[4k+1](q;q2)2k(q;q2)k+j(q;q)6n(q2;q2)2k(q2;q2)kj(q;q2)2j.

    are divisible by (1+qn)2[2n+1][2nn]. Here [m]=1+q++qm1,(a;q)m=(1a)(1aq)(1aqm1), and [mk]=(qmk+1;q)k/(q;q)k.

    Citation: Su-Dan Wang. The q-WZ pairs and divisibility properties of certain polynomials[J]. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227

    Related Papers:

    [1] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
    [2] Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable $ q $-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506
    [3] S. M. Madian . Some properties for certain class of bi-univalent functions defined by $ q $-Cătaş operator with bounded boundary rotation. AIMS Mathematics, 2022, 7(1): 903-914. doi: 10.3934/math.2022053
    [4] Jung Yoog Kang, Cheon Seoung Ryoo . The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
    [5] A. A. Azzam, Daniel Breaz, Shujaat Ali Shah, Luminiţa-Ioana Cotîrlă . Study of the fuzzy $ q- $spiral-like functions associated with the generalized linear operator. AIMS Mathematics, 2023, 8(11): 26290-26300. doi: 10.3934/math.20231341
    [6] Chuanan Wei, Chun Li . New $ q $-supercongruences arising from a summation of basic hypergeometric series. AIMS Mathematics, 2022, 7(3): 4125-4136. doi: 10.3934/math.2022228
    [7] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [8] Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Rania Saadeh . Certain differential subordination results for univalent functions associated with $ q $-Salagean operators. AIMS Mathematics, 2023, 8(7): 15892-15906. doi: 10.3934/math.2023811
    [9] Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141
    [10] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
  • Using the q-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some q-congruences obtained by Guo earlier, or q-analogues of some congruences of Sun. For example, we prove that, for n1 and 0jn, the following two polynomials

    nk=j(1)k[3k2j+1][2k2jk](q;q2)k(q;q2)kj(q;q)3n(q;q)k(q2;q2)kj,nk=j(1)nkq(kj)2[4k+1](q;q2)2k(q;q2)k+j(q;q)6n(q2;q2)2k(q2;q2)kj(q;q2)2j.

    are divisible by (1+qn)2[2n+1][2nn]. Here [m]=1+q++qm1,(a;q)m=(1a)(1aq)(1aqm1), and [mk]=(qmk+1;q)k/(q;q)k.



    It was conjectured by Van Hamme [24] that, for any odd prime p,

    p12k=04k+1(64)k(2kk)3p(1)p12(modp3). (1.1)

    The congruence (1.1) was first proved by Mortenson [19] using a technical evaluation of a quotient of Gamma functions, and later reproved by Zudilin [28] via the WZ (Wilf-Zeilberger) method. Using the same WZ-pair as Zudilin, Z.-W. Sun [23] proves the following generalization of (1.1): for any positive integer n,

    nk=0(4k+1)(2kk)3(64)nk0mod4(2n+1)(2nn). (1.2)

    Moreover, Z.-W. Sun [22,Conjecture 5.1(ⅰ)] proposed the following conjecture: for n1,

    nk=0(3k+1)(2kk)3(8)nk0(mod4(2n+1)(2nn)), (1.3)
    nk=0(6k+1)(2kk)3(512)nk0(mod4(2n+1)(2nn)), (1.4)
    nk=0(6k+1)(2kk)3256nk0(mod4(2n+1)(2nn)). (1.5)

    The above three congruences were later proved by He [13,14] using the WZ method again. Recently, still via the WZ method, Sun [21,Theorem 1.1] gave further generalizations of (1.3)–(1.5), such as: for n1 and 0jn,

    nk=j(6k2j+1)(2kk)(2k+2jk+j)(2k2jkj)(k+jk)(2jj)28k8n2j0(mod4(2n+1)(2nn)). (1.6)

    It is easy to see that the j=0 case of (1.6) reduces to (1.5). The reader is referred to [1] for a collection of some other interesting applications of the WZ method in recent years.

    On the other hand, by finding a q-analogue of the WZ pair in Zudilin's proof of (1.1), Guo [3] gave the following q-analogue of (1.2):

    nk=0(1)kqk2[4k+1][2kk]3(qk+1;q)6nk0(mod(1+qn)2[2n+1][2nn]). (1.7)

    Here and in what follows, the q-shifted factorials are defined by

    (a;q)k:=(a;q)(aqk;q), where(a;q)=j=0(1aqj),

    the q-integers are defined as [n]=[n]q=(1qn)/(1q), and the q-binomial coefficients are given by

    [mk]=[mk]q={(q;q)m(q;q)k(q;q)mkif 0km,0otherwise.

    In his subsequent work [4,5,6], Guo also gave similar q-analogues of (1.3)–(1.5). For more recent progress on q-congruences, see [7,8,9,10,11,15,16,17,18,20,25,26,29].

    In this paper, we shall give q-analogues of Sun's generalizations of (1.3)–(1.5), including a q-analogue of (1.6). We shall also give a further generalization of (1.7). Our main results can be stated as follows.

    Theorem 1.1. Let n be a positive integer and 0jn. Then modulo (1+qn)2[2n+1][2nn],

    nk=j(1)k[3k2j+1][2k2jk](q;q2)k(q;q2)kj(q;q)3n(q;q)k(q2;q2)kj0, (1.8)
    nk=j(1)k[6k2j+1](q;q2)k+j(q;q2)2kj(q;q)6n(q2;q2)3n(q4;q4)2k(q4;q4)kj0, (1.9)
    1+qn1+q2nnk=jq(kj)2[6k2j+1](q2;q4)k(q;q2)kj(q;q2)k+j(q;q)4n(q2;q2)4n(q4;q4)2k(q4;q4)kj(q2;q4)j0. (1.10)

    It is easy to see that, when q=1 the congruence (1.10) reduces to

    nk=j28n2k(6k2j+1)(12)k(12)kj(12)k+j(1)2k(1)kj(12)j0(mod4(2n+1)(2nn)),

    where (a)k=a(a+1)(a+k1) for k1 and (a)0=1. This congruence is exactly an equivalent form of (1.6). Similarly, the congruences (1.8) and (1.9) in the q=1 case reduce to the other two results in [21,Theorem 1.1].

    Theorem 1.2. Let n be a positive integer and 0jn. Then

    nk=j(1)kq(kj)2[4k+1](q;q2)2k(q;q2)k+j(q;q)6n(q2;q2)2k(q2;q2)kj(q;q2)2j0(mod(1+qn)2[2n+1][2nn]). (1.11)

    It is clear that the q=1 case of (1.11) gives

    nk=j(1)k(4k+1)(2kk)2(2k+2jk+j)(k+jkj)(2jj)64kn0(mod4(2n+1)(2nn)),

    which is a generalization of (1.2), and was neglected by Sun [21].

    The rest of the paper is organized as follows. We first establish a general divisibility results based on the q-WZ machinery in the next section. We shall prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively. Finally, we shall propose some open problems in Section 5.

    Let A=A(n,k) be a double-indexed sequence with values in a suitable ground-field containing the rational number field and q. Recall that the sequence A is called q-hypergeometric in both parameters if both quotients

    A(n+1,k)A(n,k)andA(n,k+1)A(n,k)

    are rational functions in qn and qk over certain field for all n and k whenever the quotients are well-defined. We say that two q-hypergeometric functions F(n,k) and G(n,k) form a q-WZ pair if they satisfy the following relation:

    F(n,k1)F(n,k)=G(n+1,k)G(n,k). (2.1)

    Wilf and Zeilberger [27] showed that in this case there exists a rational function C(n,k) in qn and qk such that F(n,k)=C(n,k)G(n,k). The function C(n,k) is usually called the certificate of the pair (F,G).

    We have the following q-version of [21,Theorem 2.1].

    Theorem 2.1. Let F(n,k) and G(n,k) be a q-WZ pair.Assume that F(n,k)=G(n,k)=0 for n<k.Let AN(q) be a polynomial in q with integer coefficients such that AN(q)G(N+1,k) is also a polynomial in q with integer coefficients for all k1.If PN(q) is a polynomial in q with integer coefficients satisfying

    (ⅰ) AN(q)G(N+1,k)0modPN(q), for all k1;

    (ⅱ) AN(q)F(N,N)0modPN(q).

    Then, for all m0,

    AN(q)Nn=mF(n,m)0modPN(q). (2.2)

    Proof. Our proof is similar to that of [21,Theorem 2.1]. For the sake of completeness, we provide it here. We proceed by induction on m.

    Summing (2.1) over k from 1 to N, we obtain

    F(n,0)F(n,N)=Nk=1(G(n+1,k)G(n,k)).

    Multiplying both sides of the above identity by AN(q) and then summing it over n from 0 to N, we get

    AN(q)Nn=0F(n,0)AN(q)F(N,N)=AN(q)Nk=1G(N+1,k), (2.3)

    where we have used F(n,N)=0 for n<N and G(0,k)=0 for k1. From (2.3) and the conditions (ⅰ) and (ⅱ), we immediately deduce that

    AN(q)Nn=0F(n,0)0modPN(q).

    Namely, the congruence (2.2) holds for m=0.

    We now assume that (2.2) is true for some m=k with k0. Similarly as before, multiplying both sides of (2.1) by AN(q), shifting kk+1, and then summing it over n from k to N, we have

    AN(q)Nn=kF(n,k)AN(q)Nn=kF(n,k+1)=AN(q)G(N+1,k+1).

    Thus, by the condition (ⅰ) and the induction hypothesis, we get

    AN(q)Nn=kF(n,k+1)AN(q)Nn=k+1F(n,k+1)0modPN(q).

    This completes the inductive step, and therefore (2.2) is true for all m0.

    Proof of (1.8). For positive integers n, define

    (a;q)n=1(aqn;q)n=(1)nanqn(n+1)/2(q/a;q)n.

    The following functions F and G introduced in [6]:

    F(n,k)=(1)n[3n2k+1][2n2kn](q;q2)n(q;q2)nk(q;q)n(q2;q2)nk,G(n,k)=(1)n+1[n][2n2kn1](q;q2)n(q;q2)nkqn+12k(q;q)n(q2;q2)nk.

    satisfy the relation (2.1). Namely, they form a q-WZ pair.

    Since [N+1][2N+2N+1]/(1+qN+1)=[2N+1][2NN] and [2NN]0(mod(1+qN)), we have

    (q;q)3NG(N+1,k)=(1)N[N+1][2N+2N+1][2N2k+2N][2N2k+2Nk+1](q;q)2NqN2k+2(1+qN+1)(q;q)2Nk+10(mod(1+qN)2[2N+1][2NN])

    for k=1 or k2. It is clear that F(N,N)=0. The proof of (1.8) then follows from Theorem 2.1.

    Proof of (1.9). We again use a q-WZ pair to prove (1.9). The q-WZ pair has already been given in [4]:

    F(n,k)=(1)n+k[6n2k+1](q;q2)n+k(q;q2)2nk(q4;q4)2n(q4;q4)nk,G(n,k)=(1)n+k(q;q2)n+k1(q;q2)2nk(1q)(q4;q4)2n1(q4;q4)nk.

    By [4,Lemma 3.2], for 1kN, we have

    (q;q)6N(q2;q2)3NG(N+1,k)=(q;q2)N+k(q;q2)2Nk+1(q;q)6N(1q)(q2;q2)2N(q2;q2)Nk+1(q2;q2)N(q2;q2)Nk+10(mod(1+qN)2[2N+1][2NN]),

    because (q2;q2)N/(q2;q2)Nk+1 is clearly a polynomial in q with integer coefficients.

    It is easy to see that

    F(N,N)=[4N+1](q;q2)2N(q4;q4)2N=[4N+1](q2;q2)2N(q;q)2N(q;q)2N[4N2N][2NN].

    By [5,Lemma 3.1], we have

    (q;q)2N[4N+12N]0(mod(1+qN)(q;q)2N), (3.1)

    and so

    (q;q)6N(q2;q2)3NF(N,N)=(q;q)4N(q2;q2)N[2N+1](q;q)2N[4N+12N][2NN]0(mod(1+qN)2[2N+1][2NN]).

    Therefore, by Theorem 2.1, the congruence (1.9) holds.

    Proof of (1.10). The following functions, introduced in [5],

    F(n,k)=q(nk)2[6n2k+1](q2;q4)n(q;q2)nk(q;q2)n+k(q4;q4)2n(q4;q4)nk(q2;q4)k,G(n,k)=q(nk)2(q2;q4)n(q;q2)nk(q;q2)n+k1(1q)(q4;q4)2n1(q4;q4)nk(q2;q4)k,

    form a q-WZ pair. By [5,Lemma 3.2], for 1kN, we have

    (q;q)4N(q2;q2)4NG(N+1,k)=q(Nk+1)2(q;q)4N(q2;q2)N(q2;q4)N+1(q;q2)Nk+1(q;q2)N+k(1q)(q2;q2)2N(q2;q2)Nk+1(q2;q4)k(q2;q2)N(q2;q2)Nk+10(mod(1+qN)(1+q2N)[2N+1][2NN]).

    It is easy to see that

    F(N,N)=[4N+1](q;q2)2N(q4;q4)2N=[4N+1](q2;q2)2N(q;q)2N(q;q)2N[4N2N][2NN].

    By (3.1), we get

    (q;q)4N(q2;q2)4NF(N,N)=(q;q)2N(q2;q2)2N[2N+1](q;q)2N[4N+12N][2NN]0(mod(1+qN)(1+q2N)[2N+1][2NN]).

    Therefore, by Theorem 2.1, we obtain

    (q;q)4N(q2;q2)2NNn=jF(n,j)0(mod(1+qN)2[2N+1][2NN]).

    Namely, the congruence (1.10) holds.

    The proof is similar to that of Theorem 1.1. This time we need the following q-WZ pair in [3]:

    F(n,k)=(1)n+kq(nk)2[4n+1](q;q2)2n(q;q2)n+k(q2;q2)2n(q2;q2)nk(q;q2)2k,G(n,k)=(1)n+kq(nk)2(q;q2)2n(q;q2)n+k1(1q)(q2;q2)2n1(q2;q2)nk(q;q2)2k.

    By [3,Lemma 4.2], for 1kN, we have

    (q;q)6NG(N+1,k)0(mod(1+qN)2[2N+1][2NN]).

    Moreover, since

    F(N,N)=[4N+1](q;q2)2N(q2;q2)2N=[4N+1](q;q)22N[4N2N][2NN]q2,

    we immediately get

    (q;q)6NF(N,N)=(q;q)6N[2N+1](q;q)22N[4N+12N][2NN]q20(mod(1+qN)2[2N+1][2NN]).

    The proof of (1.11) then follows readily from Theorem 2.1.

    It is easy to see that

    (q;q2)k(q2;q2)k=1(q;q)2k[2kk].

    Letting j=1 in Theorems 1.1 and 1.2, we obtain the following results.

    Corollary 5.1. Let n be a positive integer. Then, modulo (1+qn)(1+q2n)[2n+1][2nn],

    nk=1q(k1)2[4k][2k+1][6k1](q;q)4n(q2;q2)4n(1+q)[2k1](q;q)4k(q2;q2)4k[2kk]2[2kk]q20.

    Corollary 5.2. Let n be a positive integer. Then, modulo (1+qn)2[2n+1][2nn],

    nk=1(1)k[k][k1][3k1](q;q)3n[2k1]2(q;q)3k[2kk]30,nk=1(1)k[4k][2k+1][6k1](q;q)6n(q2;q2)3n[2k1]2(q;q)6k(q2;q2)3k[2kk]30,nk=1(1)kq(k1)2[2k][2k+1][4k+1][2kk]3(q;q)6n(q;q)6k0.

    It is worth mentioning that Guo and the author [12,Theorem 1.4] proved that, for n1,

    nk=0[4k+1][2kk]4(qk+1;q)8nk0(mod(1+qn)3[2n+1][2nn]). (5.1)

    However, we are unable to prove the following generalization of (5.1):

    nk=jqj(j2k1)[4k+1](q;q2)3k(q;q2)k+j(q;q)8n(q2;q2)3k(q2;q2)kj(q;q2)2j0(mod(1+qn)3[2n+1][2nn]).

    Motivated by (1.11) and the above conjectural generalization of (5.1), we propose the following generalization of [20,Theorem 5.1].

    Conjecture 5.3. Let n be a positive integer and r2. Then, for 0jn, modulo (1+qn)2r2[2n+1][2nn],

    nk=j(1)kq(kj)2+(r2)(kj)[4k+1](q;q2)2r2k(q;q2)k+j(q;q)4r2n(q2;q2)2r2k(q2;q2)kj(q;q2)2j0;

    and modulo (1+qn)2r1[2n+1][2nn],

    nk=jqj(j2k1)+(r2)(kj)[4k+1](q;q2)2r1k(q;q2)k+j(q;q)4rn(q2;q2)2r1k(q2;q2)kj(q;q2)2j0.

    In Sections 3 and 4, we give proofs of some divisibility properties of certain polynomials by using the q-WZ pairs. Note that the q-WZ pairs are difficult to find, but once a q-WZ pair is given it may play a key role in the proof of a congruence. The Section 5 provides a conjectural generalization of [20,Theorem 5.1].

    The author was partially supported by the Natural Science Foundation of Inner Mongolia, China (grant 2020BS01012), Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (grant NJZY22600).

    The author declares that there is no conflict of interest in this paper.



    [1] S. Chen, How to generate all possible rational Wilf–Zeilberger pairs? Algorithms Complexity Math. Epistemology Sci., 82 (2019), 17–34. https://doi.org/10.1007/978-1-4939-9051-1_2 doi: 10.1007/978-1-4939-9051-1_2
    [2] J. Guillera, WZ pairs and q-analogues of Ramanujan series for 1/π, J. Differ. Equ. Appl., 24 (2018), 1871–1879. https://doi.org/10.1080/10236198.2018.1551380 doi: 10.1080/10236198.2018.1551380
    [3] V. J. W. Guo, A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl., 458 (2018), 590–600. https://doi.org/10.1016/j.jmaa.2017.09.022 doi: 10.1016/j.jmaa.2017.09.022
    [4] V. J. W. Guo, A q-analogue of the (L.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 749–761. https://doi.org/10.1016/j.jmaa.2018.06.023 doi: 10.1016/j.jmaa.2018.06.023
    [5] V. J. W. Guo, A q-analogue of the (J.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 776–788. https://doi.org/10.1016/j.jmaa.2018.06.021 doi: 10.1016/j.jmaa.2018.06.021
    [6] V. J. W. Guo, q-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. https://doi.org/10.1007/s11139-019-00161-0 doi: 10.1007/s11139-019-00161-0
    [7] V. J. W. Guo, q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 20 (2020), 102078. https://doi.org/10.1016/j.aam.2020.102078 doi: 10.1016/j.aam.2020.102078
    [8] V. J. W. Guo, Some variations of a "divergent" Ramanujan-type q-supercongruence, J. Differ. Equ. Appl., 27 (2021), 376–388. https://doi.org/10.1080/10236198.2021.1900140 doi: 10.1080/10236198.2021.1900140
    [9] V. J. W. Guo, J. C. Liu, q-Analogues of two Ramanujan-type formulas for 1/π, J. Differ. Equ. Appl., 24 (2018), 1368–1373. https://doi.org/10.1080/10236198.2018.1485669 doi: 10.1080/10236198.2018.1485669
    [10] V. J. W. Guo, M. J. Schlosser, A new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75 (2020), 155. https://doi.org/10.1007/s00025-020-01272-7 doi: 10.1007/s00025-020-01272-7
    [11] V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. https://doi.org/10.1016/j.aim.2019.02.008 doi: 10.1016/j.aim.2019.02.008
    [12] V. J. W. Guo, S. D. Wang, Some congruences involving fourth powers of central q-binomial coefficients, P. Roy. Soc. Edinb. A, 150 (2020), 1127–1138. https://doi.org/10.1017/prm.2018.96 doi: 10.1017/prm.2018.96
    [13] B. He, On the divisibility properties of certain binomial sums, J. Number Theory, 147 (2015), 133–140. https://doi.org/10.1016/j.jnt.2014.07.008 doi: 10.1016/j.jnt.2014.07.008
    [14] B. He, On the divisibility properties concerning sums of binomial coefficients, Ramanujan J., 43 (2017), 313–326. https://doi.org/10.1007/s11139-016-9780-6 doi: 10.1007/s11139-016-9780-6
    [15] L. Li, S. D. Wang, Proof of a q-supercongruence conjectured by Guo and Schlosser, RACSAM Rev. R. Acad. A, 114 (2020), 190. https://doi.org/10.1007/s13398-020-00923-2 doi: 10.1007/s13398-020-00923-2
    [16] J. C. Liu, On a congruence involving q-Catalan numbers, C. R. Math., 358 (2020), 211–215. https://doi.org/10.5802/crmath.35 doi: 10.5802/crmath.35
    [17] J. C. Liu, Z. Y. Huang, A truncated identity of Euler and related q-congruences, Bull. Aust. Math. Soc., 102 (2020), 353–359. https://doi.org/10.1017/S0004972720000301 doi: 10.1017/S0004972720000301
    [18] J. C. Liu, F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math., 116 (2020), 102003. https://doi.org/10.1016/j.aam.2020.102003 doi: 10.1016/j.aam.2020.102003
    [19] E. Mortenson, A p-adic supercongruence conjecture of van Hamme, P. Am. Math. Soc., 136 (2008), 4321–4328. https://doi.org/10.1090/S0002-9939-08-09389-1 doi: 10.1090/S0002-9939-08-09389-1
    [20] H. X. Ni, H. Pan, Divisibility of some binomial sums, Acta Arith., 194 (2020), 367–381. https://doi.org/10.4064/aa181114-24-7 doi: 10.4064/aa181114-24-7
    [21] B. Y. Sun, Finding more divisibility properties of binomial sums via the WZ method, Ramanujan J., 48 (2019), 173–189. https://doi.org/10.1007/s11139-018-0001-3 doi: 10.1007/s11139-018-0001-3
    [22] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. https://doi.org/10.1007/s11425-011-4302-x doi: 10.1007/s11425-011-4302-x
    [23] Z. W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Comb., 20 (2013). https://doi.org/10.37236/3022 doi: 10.37236/3022
    [24] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic functional analysis (Nijmegen, 1996), Lecture Notes Pure Appl. Math. 192, Dekker, New York, 1997,223–236.
    [25] X. Wang, M. Yu, Some new q-congruences on double sums, RACSAM Rev. R. Acad. A, 115 (2021). https://doi.org/10.1007/s13398-020-00946-9 doi: 10.1007/s13398-020-00946-9
    [26] X. Wang, M. Yue, Some q-supercongruences from Watson's 8ϕ7 transformation formula, Results Math., 75 (2020), 71. https://doi.org/10.1007/s00025-020-01195-3 doi: 10.1007/s00025-020-01195-3
    [27] H. S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities, Invent. Math., 108 (1992), 575–633. https://doi.org/10.1007/BF02100618 doi: 10.1007/BF02100618
    [28] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. https://doi.org/10.1016/j.jnt.2009.01.013 doi: 10.1016/j.jnt.2009.01.013
    [29] W. Zudilin, Congruences for q-binomial coefficients, Ann. Combin., 23 (2019), 1123–1135. https://doi.org/10.1007/s00026-019-00461-8 doi: 10.1007/s00026-019-00461-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1881) PDF downloads(61) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog