Using the $ q $-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some $ q $-congruences obtained by Guo earlier, or $ q $-analogues of some congruences of Sun. For example, we prove that, for $ n\geqslant 1 $ and $ 0\leqslant j\leqslant n $, the following two polynomials
$ \begin{align*} &\sum\limits_{k = j}^{n} (-1)^{k}[3k-2j+1]{2k-2j\brack k}\frac{(q;q^2)_k(q;q^2)_{k-j}(-q;q)_n^3}{(q;q)_k(q^2;q^2)_{k-j}},\\ &\sum\limits_{k = j}^{n} (-1)^{n-k}q^{(k-j)^2}[4k+1]\frac{(q;q^2)_k^2(q;q^2)_{k+j}(-q;q)_n^6 }{(q^2;q^2)_k^2(q^2;q^2)_{k-j}(q;q^2)_j^2}. \end{align*} $
are divisible by $ (1+q^n)^2[2n+1]{2n\brack n} $. Here $ [m] = 1+q+\cdots+q^{m-1}, (a; q)_m = (1-a)(1-aq)\cdots (1-aq^{m-1}) $, and $ {m\brack k} = (q^{m-k+1};q)_k/(q; q)_k $.
Citation: Su-Dan Wang. The $ q $-WZ pairs and divisibility properties of certain polynomials[J]. AIMS Mathematics, 2022, 7(3): 4115-4124. doi: 10.3934/math.2022227
Using the $ q $-WZ (Wilf-Zeilberger) pairs we give divisibility properties of certain polynomials. These results may deemed generalizations of some $ q $-congruences obtained by Guo earlier, or $ q $-analogues of some congruences of Sun. For example, we prove that, for $ n\geqslant 1 $ and $ 0\leqslant j\leqslant n $, the following two polynomials
$ \begin{align*} &\sum\limits_{k = j}^{n} (-1)^{k}[3k-2j+1]{2k-2j\brack k}\frac{(q;q^2)_k(q;q^2)_{k-j}(-q;q)_n^3}{(q;q)_k(q^2;q^2)_{k-j}},\\ &\sum\limits_{k = j}^{n} (-1)^{n-k}q^{(k-j)^2}[4k+1]\frac{(q;q^2)_k^2(q;q^2)_{k+j}(-q;q)_n^6 }{(q^2;q^2)_k^2(q^2;q^2)_{k-j}(q;q^2)_j^2}. \end{align*} $
are divisible by $ (1+q^n)^2[2n+1]{2n\brack n} $. Here $ [m] = 1+q+\cdots+q^{m-1}, (a; q)_m = (1-a)(1-aq)\cdots (1-aq^{m-1}) $, and $ {m\brack k} = (q^{m-k+1};q)_k/(q; q)_k $.
[1] | S. Chen, How to generate all possible rational Wilf–Zeilberger pairs? Algorithms Complexity Math. Epistemology Sci., 82 (2019), 17–34. https://doi.org/10.1007/978-1-4939-9051-1_2 doi: 10.1007/978-1-4939-9051-1_2 |
[2] | J. Guillera, WZ pairs and $q$-analogues of Ramanujan series for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1871–1879. https://doi.org/10.1080/10236198.2018.1551380 doi: 10.1080/10236198.2018.1551380 |
[3] | V. J. W. Guo, A $q$-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl., 458 (2018), 590–600. https://doi.org/10.1016/j.jmaa.2017.09.022 doi: 10.1016/j.jmaa.2017.09.022 |
[4] | V. J. W. Guo, A $q$-analogue of the (L.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 749–761. https://doi.org/10.1016/j.jmaa.2018.06.023 doi: 10.1016/j.jmaa.2018.06.023 |
[5] | V. J. W. Guo, A $q$-analogue of the (J.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 466 (2018), 776–788. https://doi.org/10.1016/j.jmaa.2018.06.021 doi: 10.1016/j.jmaa.2018.06.021 |
[6] | V. J. W. Guo, $q$-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. https://doi.org/10.1007/s11139-019-00161-0 doi: 10.1007/s11139-019-00161-0 |
[7] | V. J. W. Guo, $q$-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 20 (2020), 102078. https://doi.org/10.1016/j.aam.2020.102078 doi: 10.1016/j.aam.2020.102078 |
[8] | V. J. W. Guo, Some variations of a "divergent" Ramanujan-type $q$-supercongruence, J. Differ. Equ. Appl., 27 (2021), 376–388. https://doi.org/10.1080/10236198.2021.1900140 doi: 10.1080/10236198.2021.1900140 |
[9] | V. J. W. Guo, J. C. Liu, $q$-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1368–1373. https://doi.org/10.1080/10236198.2018.1485669 doi: 10.1080/10236198.2018.1485669 |
[10] | V. J. W. Guo, M. J. Schlosser, A new family of $q$-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75 (2020), 155. https://doi.org/10.1007/s00025-020-01272-7 doi: 10.1007/s00025-020-01272-7 |
[11] | V. J. W. Guo, W. Zudilin, A $q$-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. https://doi.org/10.1016/j.aim.2019.02.008 doi: 10.1016/j.aim.2019.02.008 |
[12] | V. J. W. Guo, S. D. Wang, Some congruences involving fourth powers of central $q$-binomial coefficients, P. Roy. Soc. Edinb. A, 150 (2020), 1127–1138. https://doi.org/10.1017/prm.2018.96 doi: 10.1017/prm.2018.96 |
[13] | B. He, On the divisibility properties of certain binomial sums, J. Number Theory, 147 (2015), 133–140. https://doi.org/10.1016/j.jnt.2014.07.008 doi: 10.1016/j.jnt.2014.07.008 |
[14] | B. He, On the divisibility properties concerning sums of binomial coefficients, Ramanujan J., 43 (2017), 313–326. https://doi.org/10.1007/s11139-016-9780-6 doi: 10.1007/s11139-016-9780-6 |
[15] | L. Li, S. D. Wang, Proof of a $q$-supercongruence conjectured by Guo and Schlosser, RACSAM Rev. R. Acad. A, 114 (2020), 190. https://doi.org/10.1007/s13398-020-00923-2 doi: 10.1007/s13398-020-00923-2 |
[16] | J. C. Liu, On a congruence involving $q$-Catalan numbers, C. R. Math., 358 (2020), 211–215. https://doi.org/10.5802/crmath.35 doi: 10.5802/crmath.35 |
[17] | J. C. Liu, Z. Y. Huang, A truncated identity of Euler and related $q$-congruences, Bull. Aust. Math. Soc., 102 (2020), 353–359. https://doi.org/10.1017/S0004972720000301 doi: 10.1017/S0004972720000301 |
[18] | J. C. Liu, F. Petrov, Congruences on sums of $q$-binomial coefficients, Adv. Appl. Math., 116 (2020), 102003. https://doi.org/10.1016/j.aam.2020.102003 doi: 10.1016/j.aam.2020.102003 |
[19] | E. Mortenson, A $p$-adic supercongruence conjecture of van Hamme, P. Am. Math. Soc., 136 (2008), 4321–4328. https://doi.org/10.1090/S0002-9939-08-09389-1 doi: 10.1090/S0002-9939-08-09389-1 |
[20] | H. X. Ni, H. Pan, Divisibility of some binomial sums, Acta Arith., 194 (2020), 367–381. https://doi.org/10.4064/aa181114-24-7 doi: 10.4064/aa181114-24-7 |
[21] | B. Y. Sun, Finding more divisibility properties of binomial sums via the WZ method, Ramanujan J., 48 (2019), 173–189. https://doi.org/10.1007/s11139-018-0001-3 doi: 10.1007/s11139-018-0001-3 |
[22] | Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. https://doi.org/10.1007/s11425-011-4302-x doi: 10.1007/s11425-011-4302-x |
[23] | Z. W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Comb., 20 (2013). https://doi.org/10.37236/3022 doi: 10.37236/3022 |
[24] | L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: $p$-Adic functional analysis (Nijmegen, 1996), Lecture Notes Pure Appl. Math. 192, Dekker, New York, 1997,223–236. |
[25] | X. Wang, M. Yu, Some new $q$-congruences on double sums, RACSAM Rev. R. Acad. A, 115 (2021). https://doi.org/10.1007/s13398-020-00946-9 doi: 10.1007/s13398-020-00946-9 |
[26] | X. Wang, M. Yue, Some $q$-supercongruences from Watson's $_8\phi_7$ transformation formula, Results Math., 75 (2020), 71. https://doi.org/10.1007/s00025-020-01195-3 doi: 10.1007/s00025-020-01195-3 |
[27] | H. S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "$q$") multisum/integral identities, Invent. Math., 108 (1992), 575–633. https://doi.org/10.1007/BF02100618 doi: 10.1007/BF02100618 |
[28] | W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. https://doi.org/10.1016/j.jnt.2009.01.013 doi: 10.1016/j.jnt.2009.01.013 |
[29] | W. Zudilin, Congruences for $q$-binomial coefficients, Ann. Combin., 23 (2019), 1123–1135. https://doi.org/10.1007/s00026-019-00461-8 doi: 10.1007/s00026-019-00461-8 |