In this paper, we introduce a few new generalizations of the classical Perov-fixed point theorem for single-valued and multi-valued mappings in a complete generalized metric space endowed with a binary relation. We have furnished our work with examples to show that several metrical-fixed point theorems can be obtained from an arbitrary binary relation.
Citation: Yahya Almalki, Fahim Ud Din, Muhammad Din, Muhammad Usman Ali, Noor Jan. Perov-fixed point theorems on a metric space equipped with ordered theoretic relation[J]. AIMS Mathematics, 2022, 7(11): 20199-20212. doi: 10.3934/math.20221105
In this paper, we introduce a few new generalizations of the classical Perov-fixed point theorem for single-valued and multi-valued mappings in a complete generalized metric space endowed with a binary relation. We have furnished our work with examples to show that several metrical-fixed point theorems can be obtained from an arbitrary binary relation.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn., 2 (1964), 115–134. |
[3] | M. Abbas, V. Rakocevic, A. Iqbal, Fixed points of Perov type contractive mappings on the set endowed with a graphic structure, RACSAM, 112 (2018), 209–228. https://doi.org/10.1007/s13398-016-0373-4 doi: 10.1007/s13398-016-0373-4 |
[4] | A. D. Flip, A. Petrusel, Fixed point theorems on space endowed with vector valued metrics, Fixed Point Theory Appl., 2010 (2010), 281381. https://doi.org/10.1155/2010/281381 doi: 10.1155/2010/281381 |
[5] | M. Cvetković, V. Rakocević, Extensions of Perov theorem, Carpathian J. Math., 31 (2015), 181–188. https://doi.org/10.37193/CJM.2015.02.05 |
[6] | I. Altun, M. Olgun, Fixed point results for Perov type F-contractions and an application, J. Fixed Point Theory Appl., 22 (2020), 46. https://doi.org/10.1007/s11784-020-00779-4 doi: 10.1007/s11784-020-00779-4 |
[7] | D. Ilić, M. Cvetković, L. Gajić, V. Rakočević, Fixed points of sequence of Ćirić generalized contractions of Perov type, Mediterr. J. Math., 13 (2016), 3921–3937. https://doi.org/10.1007/s00009-016-0724-6 doi: 10.1007/s00009-016-0724-6 |
[8] | F. Vetro, S. Radenović, Some results of Perov type in rectangular cone metric spaces, J. Fixed Point Theory Appl., 20 (2018), 41. https://doi.org/10.1007/s11784-018-0520-y doi: 10.1007/s11784-018-0520-y |
[9] | A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y |
[10] | S. Lipschutz, Schaum's outline of theory and problems of set theory and related topics, New York: McGraw-Hill, 1964. |
[11] | J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5 |
[12] | M. Turinici, Linear contractions in product ordered metric spaces, Ann. Univ. Ferrara, 59 (2013), 187–198. https://doi.org/10.1007/s11565-012-0164-6 doi: 10.1007/s11565-012-0164-6 |
[13] | H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: A simple proof, J. Fixed Point Theory Appl., 16 (2014), 373–383. https://doi.org/10.1007/s11784-015-0218-3 doi: 10.1007/s11784-015-0218-3 |
[14] | M. Turinici, Ran-Reurings fixed point results in ordered metric spaces, Libertas Math., 31 (2011), 49–55. |
[15] | M. Turinici, Nieto-Lopez theorems in ordered metric spaces, arXiv, 2011. https://doi.org/10.48550/arXiv.1105.2401 |