Research article Special Issues

Complex network near-synchronization for non-identical predator-prey systems

  • Received: 04 July 2022 Revised: 28 August 2022 Accepted: 07 September 2022 Published: 13 September 2022
  • MSC : 34A34, 34C60, 92B05

  • In this paper, we analyze the properties of a complex network of predator-prey systems, modeling the ecological dynamics of interacting species living in a fragmented environment. We consider non-identical instances of a Lotka-Volterra model with Holling type II functional response, which undergoes a Hopf bifurcation, and focus on the possible synchronization of distinct local behaviours. We prove an original result for the near-synchronization of non-identical systems, which shows how to and to what extent an extinction dynamic can be driven to a persistence equilibrium. Our theoretical statements are illustrated by appropriate numerical simulations.

    Citation: Guillaume Cantin, Cristiana J. Silva. Complex network near-synchronization for non-identical predator-prey systems[J]. AIMS Mathematics, 2022, 7(11): 19975-19997. doi: 10.3934/math.20221093

    Related Papers:

  • In this paper, we analyze the properties of a complex network of predator-prey systems, modeling the ecological dynamics of interacting species living in a fragmented environment. We consider non-identical instances of a Lotka-Volterra model with Holling type II functional response, which undergoes a Hopf bifurcation, and focus on the possible synchronization of distinct local behaviours. We prove an original result for the near-synchronization of non-identical systems, which shows how to and to what extent an extinction dynamic can be driven to a persistence equilibrium. Our theoretical statements are illustrated by appropriate numerical simulations.



    加载中


    [1] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Physics reports, 469 (2008), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002 doi: 10.1016/j.physrep.2008.09.002
    [2] M. Barahona, L. M. Pecora, Synchronization in small-world systems, Phys. rev. lett., 89 (2002), 054101. https://doi.org/10.1103/PhysRevLett.89.054101 doi: 10.1103/PhysRevLett.89.054101
    [3] D. Barman, J. Roy, S. Alam, Modelling hiding behaviour in a predator-prey system by both integer order and fractional order derivatives, Ecol. Inform., 67 (2022), 101483. https://doi.org/10.1016/j.ecoinf.2021.101483 doi: 10.1016/j.ecoinf.2021.101483
    [4] A. D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, 1998. https://doi.org/10.1142/2284
    [5] I. Belykh, M. Hasler, M. Lauret, H. Nijmeijer, Synchronization and graph topology, Int. J. Bifurcat. Chaos, 15 (2005), 3423–3433. https://doi.org/10.1142/S0218127405014143 doi: 10.1142/S0218127405014143
    [6] G. Cantin, M. Aziz-Alaoui, Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model, Commun. Pur. Appl. Anal., 20 (2021), 623. https://doi.org/10.3934/cpaa.2020283 doi: 10.3934/cpaa.2020283
    [7] R. Dirzo, H. S. Young, M. Galetti, G. Ceballos, N. J. Isaac, B. Collen, Defaunation in the Anthropocene, Science, 345 (2014), 401–406. https://doi.org/10.1126/science.1251817 doi: 10.1126/science.1251817
    [8] N. M. Haddad, L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, et al., Habitat fragmentation and its lasting impact on earth's ecosystems, Sci. adv., 1 (2015), e1500052. https://doi.org/10.1126/sciadv.1500052 doi: 10.1126/sciadv.1500052
    [9] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [10] C. N. Johnson, A. Balmford, B. W. Brook, J. C. Buettel, M. Galetti, L. Guangchun, et al., Biodiversity losses and conservation responses in the Anthropocene, Science, 356 (2017), 270–275. https://doi.org/10.1126/science.aam9317 doi: 10.1126/science.aam9317
    [11] Y. A. Kuznetsov, I. A. Kuznetsov, Y. Kuznetsov, Elements of applied bifurcation theory, volume 112. Springer, 1998.
    [12] R. E. Leakey, R. Lewin, The sixth extinction: patterns of life and the future of humankind, J. Leisure Res., 29 (1997), 476. https://doi.org/10.1080/00222216.1997.11949812 doi: 10.1080/00222216.1997.11949812
    [13] B. J. McGill, M. Dornelas, N. J. Gotelli, A. E. Magurran, Fifteen forms of biodiversity trend in the Anthropocene, Trends ecol. evol., 30 (2015), 104–113. https://doi.org/10.1016/j.tree.2014.11.006 doi: 10.1016/j.tree.2014.11.006
    [14] A. Miranville, G. Cantin, M. Aziz-Alaoui, Bifurcations and synchronization in networks of unstable reaction–diffusion systems, J. Nonlinear Sci., 31 (2021), 1–34. https://doi.org/10.1007/s00332-021-09701-9 doi: 10.1007/s00332-021-09701-9
    [15] R. J. Naiman, H. Decamps, M. Pollock, The role of riparian corridors in maintaining regional biodiversity, Ecol. appl., 3 (1993), 209–212. https://doi.org/10.2307/1941822 doi: 10.2307/1941822
    [16] L. Perko, Differential equations and dynamical systems, volume 7, Springer Science & Business Media, 2013.
    [17] L. A. Real, The kinetics of functional response, The American Naturalist, 111 (1977), 289–300. https://doi.org/10.1086/283161 doi: 10.1086/283161
    [18] J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. https://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176
    [19] G. T. Skalski, J. F. Gilliam, Functional responses with predator interference: viable alternatives to the holling type ii model, Ecology, 82 (2001), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
    [20] H. L. Smith, H. R. Thieme, Dynamical systems and population persistence, volume 118, American Mathematical Soc., 2011.
    [21] L. R. Tambosi, A. C. Martensen, M. C. Ribeiro, J. P. Metzger, A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity, Restor. ecol., 22 (2014), 169–177. https://doi.org/10.1111/rec.12049 doi: 10.1111/rec.12049
    [22] A. Yagi, Abstract parabolic evolution equations and their applications, Springer Science & Business Media, 2009. https://doi.org/10.1007/978-3-642-04631-5_4
    [23] R. Yang, C. Nie, D. Jin, Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity, Nonlinear Dynam., (2022), 1–22. https://doi.org/10.21203/rs.3.rs-1141642/v1
    [24] R. Yang, F. Wang, D. Jin, Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator–prey system with additional food, Math. Method. Appl. Sci., (2022). https://doi.org/10.1002/mma.8349
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1603) PDF downloads(82) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog