Research article

Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm

  • Received: 20 April 2022 Revised: 25 June 2022 Accepted: 27 June 2022 Published: 29 August 2022
  • MSC : 65L11, 65M12

  • In the present article, a mesh-free technique has been presented to study the behavior of nonlinear singularly perturbed Fisher's problem, which exhibits the traveling wave propagation phenomenon. Some narrow regions adjacent to the left and right lateral boundary may possess rapid variations when the singular perturbation parameter $ \epsilon\rightarrow 0 $, which are not captured nicely by the traditional numerical schemes. In the current work, a robust numerical strategy is proposed, which comprises the implicit Crank-Nicolson scheme to discretize the time derivative term and the element-free Galerkin (EFG) scheme to discretize the spatial derivative terms with nodes densely distributed in the boundary layer regions. The stability of the semi-discrete scheme has been analyzed, and the rate of convergence is shown to be $ \mathcal{O}(\tau^{2}) $. The nonlinear nature of the considered problem has been tackled by employing the quasilinearization process, and its convergence rate has been discussed. Some numerical experiments have been performed to verify the computational uniformity and robustness of the suggested method, rate of convergence as well $ L_{\infty} $ errors have been presented, which depicts the effectiveness of the proposed method.

    Citation: Jagbir Kaur, Vivek Sangwan. Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm[J]. AIMS Mathematics, 2022, 7(10): 19105-19125. doi: 10.3934/math.20221049

    Related Papers:

  • In the present article, a mesh-free technique has been presented to study the behavior of nonlinear singularly perturbed Fisher's problem, which exhibits the traveling wave propagation phenomenon. Some narrow regions adjacent to the left and right lateral boundary may possess rapid variations when the singular perturbation parameter $ \epsilon\rightarrow 0 $, which are not captured nicely by the traditional numerical schemes. In the current work, a robust numerical strategy is proposed, which comprises the implicit Crank-Nicolson scheme to discretize the time derivative term and the element-free Galerkin (EFG) scheme to discretize the spatial derivative terms with nodes densely distributed in the boundary layer regions. The stability of the semi-discrete scheme has been analyzed, and the rate of convergence is shown to be $ \mathcal{O}(\tau^{2}) $. The nonlinear nature of the considered problem has been tackled by employing the quasilinearization process, and its convergence rate has been discussed. Some numerical experiments have been performed to verify the computational uniformity and robustness of the suggested method, rate of convergence as well $ L_{\infty} $ errors have been presented, which depicts the effectiveness of the proposed method.



    加载中


    [1] M. Ablowitz, A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed, Bltn. Mathcal. Biology, 41 (1979), 835–840. http://dx.doi.org/10.1007/BF02462380 doi: 10.1007/BF02462380
    [2] K. Al-Khaled, Numerical study of Fisher's reaction-diffusion equation by the sinc collocation method, J. Comput. Appl. Math., 137 (2001), 245–255. http://dx.doi.org/10.1016/S0377-0427(01)00356-9 doi: 10.1016/S0377-0427(01)00356-9
    [3] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. http://dx.doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
    [4] L. Balyan, A. Mittal, M. Kumar, M. Choube, Stability analysis and highly accurate numerical approximation of Fisher's equations using pseudospectral method, Math. Comput. Simulat., 177 (2020), 86–104. http://dx.doi.org/10.1016/j.matcom.2020.04.012 doi: 10.1016/j.matcom.2020.04.012
    [5] I. Grant, Quasilinearization and non-linear boundary value problems by R. E. Bellman and R. E. Kalaba (1965), Math. Gaz., 52 (1968), 212–212. http://dx.doi.org/10.2307/3612757 doi: 10.2307/3612757
    [6] J. Canosa, Diffusion in nonlinear multiplicative media, J. Math. Phys., 10 (1969), 1862. http://dx.doi.org/10.1063/1.1664771 doi: 10.1063/1.1664771
    [7] G. Carey, Y. Shen, Least-squares finite element approximation of Fisher's reaction-diffusion equation, Numer. Meth. Part. D. E., 11 (1995), 175–186. http://dx.doi.org/10.1002/num.1690110206 doi: 10.1002/num.1690110206
    [8] I. Dag, O. Ersoy, The exponential cubic b-spline algorithm for Fisher equation, Chaos Soliton. Fract., 86 (2016), 101–106. http://dx.doi.org/10.1016/j.chaos.2016.02.031 doi: 10.1016/j.chaos.2016.02.031
    [9] Z. Feng, Y. Li, Complex traveling wave solutions to the Fisher equation, Physica A, 366 (2006), 115–123. http://dx.doi.org/10.1016/j.physa.2005.10.058 doi: 10.1016/j.physa.2005.10.058
    [10] R. Fisher, The wave of advance of advantageous genes, Annals of eugenics, 7 (1937), 355–369. http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
    [11] P. Gray, S. Scott, Chemical oscillations and instabilities: non-linear chemical kinetics, Clarendon: Clarendon Press, 1990.
    [12] E. Infeld, G. Rowlands, Nonlinear waves, solitons and chaos, Cambridge: Cambridge university press, 2000.
    [13] M. Khader, K. Saad, A numerical approach for solving the fractional Fisher equation using chebyshev spectral collocation method, Chaos Soliton. Fract., 110 (2018), 169–177. http://dx.doi.org/10.1016/j.chaos.2018.03.018 doi: 10.1016/j.chaos.2018.03.018
    [14] S. Kumar, R. Jiwari, R. Mittal, Radial basis functions based meshfree schemes for the simulation of non-linear extended Fisher-kolmogorov model, Wave Motion, 109 (2021), 102863. http://dx.doi.org/10.1016/j.wavemoti.2021.102863 doi: 10.1016/j.wavemoti.2021.102863
    [15] X. Li, S. Li, A fast element-free galerkin method for the fractional diffusion-wave equation, Appl. Math. Lett., 122 (2021), 107529. http://dx.doi.org/10.1016/j.aml.2021.107529 doi: 10.1016/j.aml.2021.107529
    [16] R. Mickens, A best finite-difference scheme for the Fisher equation, Numer. Meth. Part. D. E., 10 (1994), 581–585. http://dx.doi.org/10.1002/num.1690100505 doi: 10.1002/num.1690100505
    [17] R. Mittal, R. Jiwari, Numerical study of Fisher's equation by using differential quadrature method, Int. J. Inf. Syst. Sci., 5 (2009), 143–160.
    [18] D. Olmos, B. Shizgal, A pseudospectral method of solution of Fisher's equation, J. Comput. Appl. Math., 193 (2006), 219–242. http://dx.doi.org/10.1016/j.cam.2005.06.028 doi: 10.1016/j.cam.2005.06.028
    [19] H. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, Berlin: Springer, 2008. http://dx.doi.org/10.1007/978-3-540-34467-4
    [20] M. Rosa, S. Chulián, M. Gandarias, R. Traciná, Application of lie point symmetries to the resolution of an interface problem in a generalized Fisher equation, Physica D, 405 (2020), 132411. http://dx.doi.org/10.1016/j.physd.2020.132411 doi: 10.1016/j.physd.2020.132411
    [21] S. Tang, R. Weber, Numerical study of Fisher's equation by a petrov-galerkin finite element method, The ANZIAM Journal, 33 (1991), 27–38. http://dx.doi.org/10.1017/S0334270000008602 doi: 10.1017/S0334270000008602
    [22] J. Tyson, P. Brazhnik, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (2000), 371–391. http://dx.doi.org/10.1137/S0036139997325497 doi: 10.1137/S0036139997325497
    [23] M. Uzunca, B. Karasözen, T. Küçükseyhan, Moving mesh discontinuous Galerkin methods for PDEs with traveling waves, Appl. Math. Comput., 292 (2017), 9–18. http://dx.doi.org/10.1016/j.amc.2016.07.034 doi: 10.1016/j.amc.2016.07.034
    [24] X. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279. http://dx.doi.org/10.1016/0375-9601(88)90027-8 doi: 10.1016/0375-9601(88)90027-8
    [25] A. Wazwaz, A. Gorguis, An analytic study of Fisher's equation by using adomian decomposition method, Appl. Math. Comput., 154 (2004), 609–620. http://dx.doi.org/10.1016/S0096-3003(03)00738-0 doi: 10.1016/S0096-3003(03)00738-0
    [26] T. Zhang, X. Li, L. Xu, Error analysis of an implicit galerkin meshfree scheme for general second-order parabolic problems, Appl. Numer. Math., 177 (2022), 58–78. http://dx.doi.org/10.1016/j.apnum.2022.03.005 doi: 10.1016/j.apnum.2022.03.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1399) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog