Research article Special Issues

Robust synchronization analysis of delayed fractional order neural networks with uncertain parameters

  • Received: 15 June 2022 Revised: 27 July 2022 Accepted: 12 August 2022 Published: 25 August 2022
  • MSC : 93A30, 93D09

  • This paper is concerned with the robust synchronization analysis of delayed fractional order neural networks with uncertain parameters (DFNNUPs). Firstly, the DFNNUPs drive system model and response system model are established. Secondly, using multiple matrix quadratic Lyapunov function approach and inequality analysis technique, the robust synchronization conditions are derived in the form of the matrix inequalities. Finally, the correctness of the theoretical results is verified by an example.

    Citation: Xinxin Zhang, Yunpeng Ma, Shan Gao, Jiancai Song, Lei Chen. Robust synchronization analysis of delayed fractional order neural networks with uncertain parameters[J]. AIMS Mathematics, 2022, 7(10): 18883-18896. doi: 10.3934/math.20221040

    Related Papers:

  • This paper is concerned with the robust synchronization analysis of delayed fractional order neural networks with uncertain parameters (DFNNUPs). Firstly, the DFNNUPs drive system model and response system model are established. Secondly, using multiple matrix quadratic Lyapunov function approach and inequality analysis technique, the robust synchronization conditions are derived in the form of the matrix inequalities. Finally, the correctness of the theoretical results is verified by an example.



    加载中


    [1] A. M. Alimi, C. Aouiti, E. A. Assali, Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication, Neurocomputing, 332 (2019), 29–43. https://doi.org/10.1016/j.neucom.2018.11.020 doi: 10.1016/j.neucom.2018.11.020
    [2] L. Lin, J. D. Cao, S. Y. Zhu, P. Shi, Synchronization analysis for stochastic networks through finite fields, IEEE Trans. Automat. Control, 67 (2022), 1016–1022. https://doi.org/10.1109/TAC.2021.3081621 doi: 10.1109/TAC.2021.3081621
    [3] R. Nobili, The machine of the mind Part II: The role of synchronization in brain information processing, 2020.
    [4] Y. Du, J. E. Clark, J. Whitall, Timing at peak force may be the hidden target controlled in continuation and synchronization tapping, Exp. Brain Res., 235 (2017), 1541–1554. https://doi.org/10.1007/s00221-017-4918-3 doi: 10.1007/s00221-017-4918-3
    [5] J. Y. Xiao, S. P. Wen, X. J. Yang, S. M. Zhong, New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality, Neural Networks, 122 (2020), 320–337. https://doi.org/10.1016/j.neunet.2019.10.017 doi: 10.1016/j.neunet.2019.10.017
    [6] U. Kandasamy, X. D. Li, R. Rajan, Quasi-synchronization and bifurcation results on fractional-order quaternion-valued neural networks, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 4063–4072. https://doi.org/10.1109/TNNLS.2019.2951846 doi: 10.1109/TNNLS.2019.2951846
    [7] C. J. Xu, W. Zhang, C. Aouiti, Z. X. Liu, M. X. Liao, P. L. Li, Further investigation on bifurcation and their control of fractional-order bidirectional associative memory neural networks involving four neurons and multiple delays, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7581
    [8] C. J. Xu, W. Zhang, C. Aouiti, Z. X. Liu, L. Y. Yao, Further analysis on dynamical properties of fractional-order bi-directional associative memory neural networks involving double delays, Math. Methods Appl. Sci., 2022. https://doi.org/10.1002/mma.8477
    [9] F. F. Du, J. G. Lu, New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay, Appl. Math. Comput., 389 (2021), 125616. https://doi.org/10.1016/j.amc.2020.125616 doi: 10.1016/j.amc.2020.125616
    [10] K. X. Wu, B. Li, Y. W. Du, S. S. Du, Synchronization for impulsive hybrid-coupled reaction-diffusion neural networks with time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 82 (2019), 105031. https://doi.org/10.1016/j.cnsns.2019.105031 doi: 10.1016/j.cnsns.2019.105031
    [11] Z. L. Xu, X. D. Li, P. Y. Duan, Synchronization of complex networks with time-varying delay of unknown bound via delayed impulsive control, Neural Networks, 125 (2020), 224–232. https://doi.org/10.1016/j.neunet.2020.02.003 doi: 10.1016/j.neunet.2020.02.003
    [12] X. D. Hai, G. J. Ren, Y. G. Yu, C. H. Xu, Y. X. Zeng, Pinning synchronization of fractional and impulsive complex networks via event-triggered strategy, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 105017. https://doi.org/10.1016/j.cnsns.2019.105017 doi: 10.1016/j.cnsns.2019.105017
    [13] Y. L. Zhang, J. S. Zhuang, Y. H. Xia, Y. Z. Bai, J. D. Cao, L. F. Gu, Fixed-time synchronization of the impulsive memristor-based neural networks, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 40–53. https://doi.org/10.1016/j.cnsns.2019.04.021 doi: 10.1016/j.cnsns.2019.04.021
    [14] Z. B. Wang, H. Q. Wu, Global synchronization in fixed time for semi-Markovian switching complex dynamical networks with hybrid couplings and time-varying delays, Nonlinear Dyn., 95 (2019), 2031–2062. https://doi.org/10.1007/s11071-018-4675-2 doi: 10.1007/s11071-018-4675-2
    [15] W. W. Zhang, J. D. Cao, D. Y. Chen, F. E. Alsaadi, Synchronization in fractional-order complex-valued delayed neural networks, Entropy, 20 (2018), 1–16. https://doi.org/10.3390/e20010054 doi: 10.3390/e20010054
    [16] R. H. Li, H. Q. Wu, J. D. Cao, Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations, Acta Math. Sci., 42 (2022), 737–754. https://doi.org/10.1007/s10473-022-0219-4 doi: 10.1007/s10473-022-0219-4
    [17] L. Li, Z. Wang, J. W. Lu, Y. X. Li, Adaptive synchronization of fractional-order complex-valued neural networks with discrete and distributed delays, Entropy, 20 (2018), 1–14. https://doi.org/10.3390/e20020124 doi: 10.3390/e20020124
    [18] Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters, J. Franklin Inst., 357 (2020), 8870–8898. https://doi.org/10.1016/j.jfranklin.2020.06.025 doi: 10.1016/j.jfranklin.2020.06.025
    [19] Y. G. Sun, Y. H. Liu, Adaptive synchronization control and parameters identification for chaotic fractional neural networks with time-varying delays, Neural Process. Lett., 53 (2021), 2729–2745. https://doi.org/10.1007/s11063-021-10517-7 doi: 10.1007/s11063-021-10517-7
    [20] S. X. Liu, Y. G. Yu, S. Zhang, Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties, Neural Comput. Appl., 31 (2019), 3533–3542. https://doi.org/10.1007/s00521-017-3274-3 doi: 10.1007/s00521-017-3274-3
    [21] L. Li, X. G. Liu, M. L. Tang, S. L. Zhang, X. M. Zhang, Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings, Neurocomputing, 445 (2021), 180–193. https://doi.org/10.1016/j.neucom.2021.03.001 doi: 10.1016/j.neucom.2021.03.001
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006.
    [23] X. X. Zhang, Y. P. Ma, LMIs conditions to robust pinning synchronization of uncertain fractional-order neural networks with discontinuous activations, Soft Comput., 24 (2020), 15927–15935. https://doi.org/10.1007/s00500-020-05315-7 doi: 10.1007/s00500-020-05315-7
    [24] H. Q. Wu, X. X. Zhang, S. H. Xue, L. F. Wang, Y. Wang, LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses, Neurocomputing, 193 (2016), 148–154. https://doi.org/10.1016/j.neucom.2016.02.002 doi: 10.1016/j.neucom.2016.02.002
    [25] X. Peng, H. Q. Wu, Non-fragile robust finite-time stabilization and $H_\infty$ performance analysis for fractional-order delayed neural networks with discontinuous activations under the asynchronous switching, Neural Comput. Appl., 32 (2020), 4045–4071. https://doi.org/10.1007/s00521-018-3682-z doi: 10.1007/s00521-018-3682-z
    [26] E. E. Yaz, Linear matrix inequalities in system and control theory, Proc. IEEE, 86 (1998), 2473–2474. https://doi.org/10.1109/JPROC.1998.735454 doi: 10.1109/JPROC.1998.735454
    [27] P. Liu, M. X. Kong, Z. G. Zeng, Projective synchronization analysis of fractional-order neural networks with mixed time delays, IEEE Trans. Cybernet., 52 (2022), 6798–6808. https://doi.org/10.1109/TCYB.2020.3027755 doi: 10.1109/TCYB.2020.3027755
    [28] F. Lin, Z. Q. Zhang, Global asymptotic synchronization of a class of BAM neural networks with time delays via integrating inequality techniques, J. Syst. Sci. Complex., 33 (2020), 366–382. https://doi.org/10.1007/s11424-019-8121-4 doi: 10.1007/s11424-019-8121-4
    [29] S. L. Zhang, M. L. Tang, X. G. Liu, Synchronization of a Riemann-Liouville fractional time-delayed neural network with two inertial terms, Circuits Syst. Signal Process., 40 (2021), 5280–5308. https://doi.org/10.1007/s00034-021-01717-6 doi: 10.1007/s00034-021-01717-6
    [30] M. L. Xu, P. Liu, M. X. Kong, J. W. Sun, Anti-synchronization analysis of fractional-order neural networks with time-varying delays, In: 2020 12th International Conference on Advanced Computational Intelligence (ICACI), 2020. https://doi.org/10.1109/ICACI49185.2020.9177766
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1196) PDF downloads(67) Cited by(1)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog