Research article

A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: Properties and various estimation techniques with inference

  • Received: 20 June 2021 Accepted: 26 October 2021 Published: 02 November 2021
  • MSC : 60E05, 62E10, 62F10, 62N05, 62P10

  • In this paper, a flexible probability mass function is proposed for modeling count data, especially, asymmetric, and over-dispersed observations. Some of its distributional properties are investigated. It is found that all its statistical properties can be expressed in explicit forms which makes the proposed model useful in time series and regression analysis. Different estimation approaches including maximum likelihood, moments, least squares, Andersonӳ-Darling, Cramer von-Mises, and maximum product of spacing estimator, are derived to get the best estimator for the real data. The estimation performance of these estimation techniques is assessed via a comprehensive simulation study. The flexibility of the new discrete distribution is assessed using four distinctive real data sets ԣoronavirus-flood peaks-forest fire-Leukemia? Finally, the new probabilistic model can serve as an alternative distribution to other competitive distributions available in the literature for modeling count data.

    Citation: Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Mohamed S. Eliwa. A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: Properties and various estimation techniques with inference[J]. AIMS Mathematics, 2022, 7(2): 1726-1741. doi: 10.3934/math.2022099

    Related Papers:

  • In this paper, a flexible probability mass function is proposed for modeling count data, especially, asymmetric, and over-dispersed observations. Some of its distributional properties are investigated. It is found that all its statistical properties can be expressed in explicit forms which makes the proposed model useful in time series and regression analysis. Different estimation approaches including maximum likelihood, moments, least squares, Andersonӳ-Darling, Cramer von-Mises, and maximum product of spacing estimator, are derived to get the best estimator for the real data. The estimation performance of these estimation techniques is assessed via a comprehensive simulation study. The flexibility of the new discrete distribution is assessed using four distinctive real data sets ԣoronavirus-flood peaks-forest fire-Leukemia? Finally, the new probabilistic model can serve as an alternative distribution to other competitive distributions available in the literature for modeling count data.



    加载中


    [1] D. Roy, The discrete normal distribution, Commun. Stat. Methods, 32 (2003), 1871–1883. doi: 10.1081/STA-120023256. doi: 10.1081/STA-120023256
    [2] D. Roy, Discrete Rayleigh distribution, IEEE Trans. Reliab., 53 (2004), 255–260. doi: 10.1109/TR.2004.829161. doi: 10.1109/TR.2004.829161
    [3] M. S. Eliwa, M. El-Morshedy, A one-parameter discrete distribution for over-dispersed data: Statistical and reliability properties with applications, J. Appl. Stat., 2021, 1–21. doi: 10.1080/02664763.2021.1905787. doi: 10.1080/02664763.2021.1905787
    [4] H. Krishna, P. S. Pundir, Discrete Burr and discrete Pareto distributions, Stat. Methodol, 6 (2009), 177–188. doi: 10.1016/j.stamet.2008.07.001. doi: 10.1016/j.stamet.2008.07.001
    [5] M. Aboraya, M. Y. Haitham, G. G. Hamedani, M. Ibrahim, A new family of discrete distributions with mathematical properties, characterizations, Bayesian and non-Bayesian estimation methods, Mathematics, 8 (2020), 1648. doi: 10.3390/math8101648. doi: 10.3390/math8101648
    [6] E. Gómez-Déniz, E. Calderín-Ojeda, The discrete lindley distribution: Properties and applications, J. Stat. Comput. Simul., 81 (2011), 1405–1416. doi: 10.1080/00949655.2010.487825. doi: 10.1080/00949655.2010.487825
    [7] B. A. Para, Discrete generalized Burr-Type XII distribution, J. Mod. Appl. Stat. Methods, 13 (2014), 244–258. doi: 10.22237/jmasm/1414815120. doi: 10.22237/jmasm/1414815120
    [8] A. A. AL-Huniti, G. R. AL-Dayian, Discrete Burr type III distribution, Am. J. Math. Stat., 2 (2012), 145–152. doi: 10.5923/j.ajms.20120205.07. doi: 10.5923/j.ajms.20120205.07
    [9] T. Hussain, M. Aslam, M. Ahmad, A two parameter discrete Lindley distribution, Rev. Colomb. Estadística, 39 (2016), 45–61. doi: 10.15446/rce.v39n1.55138
    [10] B. Para, Discrete version of log-logistic distribution and its applications in genetics, Int. J. Mod. Math. Sci., 2016.
    [11] G. R. Al-dayian, Bayesian estimation and prediction of discrete Gompertz distribution, 36 (2019), 1–21. doi: 10.9734/jamcs/2021/v36i230335.
    [12] E. M. Almetwally, M. I. Gamal, Discrete alpha power inverse Lomax distribution with application of COVID-19 data, Int. J. Appl. Math., 9 (2020), 11–22.
    [13] A. Hassan, G. A. Shalbaf, S. Bilal, A. Rashid, A new flexible discrete distribution with applications to count data, J. Stat. Theory Appl., 19 (2020), 102–108.
    [14] A. Barbiero, A. Hitaj, A discrete analogue of the half-logistic distribution, 2020 International Conference on Decision Aid Sciences and Application (DASA), 2020, 64–67. doi: 10.1109/DASA51403.2020.9317237. doi: 10.1109/DASA51403.2020.9317237
    [15] F. C. Opone, E. A. Izekor, I. U. Akata, F. E. U. Osagiede, A discrete analogue of the continuous Marshall-Olkin Weibull distribution with application to count data, Earthline J. Math. Sci., 5 (2020), 415–428. doi: 10.34198/ejms.5221.415428. doi: 10.34198/ejms.5221.415428
    [16] M. S. Eliwa, A. A. Ziyad, M. El-Morshedy, Discrete Gompertz-G family of distributions for over-and under-dispersed data with properties, estimation, and applications, Mathematics, 8 (2020), 358. doi: 10.3390/math8030358. doi: 10.3390/math8030358
    [17] M. El-Morshedy, M. S. Eliwa, E. Altun, Discrete Burr-Hatke distribution with properties, estimation methods and regression model, IEEE Access, 8 (2020), 74359–74370. doi: 10.1109/ACCESS.2020.2988431. doi: 10.1109/ACCESS.2020.2988431
    [18] M. S. Eliwa, E. Altun, M. El-Dawoody, M. El-Morshedy, A new three-parameter discrete distribution with associated INAR(1) process and applications, IEEE Access, 8 (2020), 91150–91162. doi: 10.1109/ACCESS.2020.2993593. doi: 10.1109/ACCESS.2020.2993593
    [19] A. A. Al-Babtain, A. H. N. Ahmed, A. Z. Afify, A new discrete analog of the continuous Lindley distribution, with reliability applications, Entropy, 22 (2020), 1–18. doi: 10.3390/e22060603. doi: 10.3390/e22060603
    [20] M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: Properties, estimation and applications, J. Appl. Stat., 47 (2020), 354–375. doi: 10.1080/02664763.2019.1638893. doi: 10.1080/02664763.2019.1638893
    [21] M. El-Morshedy, E. Altun, M. S. Eliwa, A new statistical approach to model the counts of novel coronavirus cases, Math. Sci., 18 (2021), 1–14. doi: 10.1007/s40096-021-00390-9. doi: 10.1007/s40096-021-00390-9
    [22] S. Chakraborty, D. Chakravarty, J. Mazucheli, W. Bertoli, A discrete analog of Gumbel distribution: Properties, parameter estimation and applications, J. Appl. Stat., 48 (2021), 712–737. doi: 10.1080/02664763.2020.1744538. doi: 10.1080/02664763.2020.1744538
    [23] A. S. Eldeeb, M. Ahsan-Ul-Haq, A. Babar, A discrete analog of inverted Topp-Leone distribution: Properties, estimation and applications, Int. J. Anal. Appl., 19 (2021), 695–708.
    [24] P. L. Ramos, F. Louzada, A distribution for instantaneous failures, Stats, 2 (2019), 247–258. doi: 10.3390/stats2020019. doi: 10.3390/stats2020019
    [25] V. Choulakian, M. A. Stephens, Goodness-of-fit tests for the generalized Pareto distribution, Technometrics, 43 (2001), 478–484. doi: 10.1198/00401700152672573. doi: 10.1198/00401700152672573
    [26] H. S. Bakouch, M. A. Jazi, S. Nadarajah, A new discrete distribution, Statistics, 48 (2014), 200–240. doi: 10.1080/02331888.2012.716677. doi: 10.1080/02331888.2012.716677
    [27] S. Chakraborty, D. Chakravarty, Discrete gamma distributions: Properties and parameter estimations, Commun. Stat. Methods, 41 (2012), 3301–3324. doi: 10.1080/03610926.2011.563014. doi: 10.1080/03610926.2011.563014
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2229) PDF downloads(123) Cited by(20)

Article outline

Figures and Tables

Figures(7)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog