In this paper, a flexible probability mass function is proposed for modeling count data, especially, asymmetric, and over-dispersed observations. Some of its distributional properties are investigated. It is found that all its statistical properties can be expressed in explicit forms which makes the proposed model useful in time series and regression analysis. Different estimation approaches including maximum likelihood, moments, least squares, Andersonӳ-Darling, Cramer von-Mises, and maximum product of spacing estimator, are derived to get the best estimator for the real data. The estimation performance of these estimation techniques is assessed via a comprehensive simulation study. The flexibility of the new discrete distribution is assessed using four distinctive real data sets ԣoronavirus-flood peaks-forest fire-Leukemia? Finally, the new probabilistic model can serve as an alternative distribution to other competitive distributions available in the literature for modeling count data.
Citation: Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Mohamed S. Eliwa. A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: Properties and various estimation techniques with inference[J]. AIMS Mathematics, 2022, 7(2): 1726-1741. doi: 10.3934/math.2022099
In this paper, a flexible probability mass function is proposed for modeling count data, especially, asymmetric, and over-dispersed observations. Some of its distributional properties are investigated. It is found that all its statistical properties can be expressed in explicit forms which makes the proposed model useful in time series and regression analysis. Different estimation approaches including maximum likelihood, moments, least squares, Andersonӳ-Darling, Cramer von-Mises, and maximum product of spacing estimator, are derived to get the best estimator for the real data. The estimation performance of these estimation techniques is assessed via a comprehensive simulation study. The flexibility of the new discrete distribution is assessed using four distinctive real data sets ԣoronavirus-flood peaks-forest fire-Leukemia? Finally, the new probabilistic model can serve as an alternative distribution to other competitive distributions available in the literature for modeling count data.
[1] | D. Roy, The discrete normal distribution, Commun. Stat. Methods, 32 (2003), 1871–1883. doi: 10.1081/STA-120023256. doi: 10.1081/STA-120023256 |
[2] | D. Roy, Discrete Rayleigh distribution, IEEE Trans. Reliab., 53 (2004), 255–260. doi: 10.1109/TR.2004.829161. doi: 10.1109/TR.2004.829161 |
[3] | M. S. Eliwa, M. El-Morshedy, A one-parameter discrete distribution for over-dispersed data: Statistical and reliability properties with applications, J. Appl. Stat., 2021, 1–21. doi: 10.1080/02664763.2021.1905787. doi: 10.1080/02664763.2021.1905787 |
[4] | H. Krishna, P. S. Pundir, Discrete Burr and discrete Pareto distributions, Stat. Methodol, 6 (2009), 177–188. doi: 10.1016/j.stamet.2008.07.001. doi: 10.1016/j.stamet.2008.07.001 |
[5] | M. Aboraya, M. Y. Haitham, G. G. Hamedani, M. Ibrahim, A new family of discrete distributions with mathematical properties, characterizations, Bayesian and non-Bayesian estimation methods, Mathematics, 8 (2020), 1648. doi: 10.3390/math8101648. doi: 10.3390/math8101648 |
[6] | E. Gómez-Déniz, E. Calderín-Ojeda, The discrete lindley distribution: Properties and applications, J. Stat. Comput. Simul., 81 (2011), 1405–1416. doi: 10.1080/00949655.2010.487825. doi: 10.1080/00949655.2010.487825 |
[7] | B. A. Para, Discrete generalized Burr-Type XII distribution, J. Mod. Appl. Stat. Methods, 13 (2014), 244–258. doi: 10.22237/jmasm/1414815120. doi: 10.22237/jmasm/1414815120 |
[8] | A. A. AL-Huniti, G. R. AL-Dayian, Discrete Burr type III distribution, Am. J. Math. Stat., 2 (2012), 145–152. doi: 10.5923/j.ajms.20120205.07. doi: 10.5923/j.ajms.20120205.07 |
[9] | T. Hussain, M. Aslam, M. Ahmad, A two parameter discrete Lindley distribution, Rev. Colomb. Estadística, 39 (2016), 45–61. doi: 10.15446/rce.v39n1.55138 |
[10] | B. Para, Discrete version of log-logistic distribution and its applications in genetics, Int. J. Mod. Math. Sci., 2016. |
[11] | G. R. Al-dayian, Bayesian estimation and prediction of discrete Gompertz distribution, 36 (2019), 1–21. doi: 10.9734/jamcs/2021/v36i230335. |
[12] | E. M. Almetwally, M. I. Gamal, Discrete alpha power inverse Lomax distribution with application of COVID-19 data, Int. J. Appl. Math., 9 (2020), 11–22. |
[13] | A. Hassan, G. A. Shalbaf, S. Bilal, A. Rashid, A new flexible discrete distribution with applications to count data, J. Stat. Theory Appl., 19 (2020), 102–108. |
[14] | A. Barbiero, A. Hitaj, A discrete analogue of the half-logistic distribution, 2020 International Conference on Decision Aid Sciences and Application (DASA), 2020, 64–67. doi: 10.1109/DASA51403.2020.9317237. doi: 10.1109/DASA51403.2020.9317237 |
[15] | F. C. Opone, E. A. Izekor, I. U. Akata, F. E. U. Osagiede, A discrete analogue of the continuous Marshall-Olkin Weibull distribution with application to count data, Earthline J. Math. Sci., 5 (2020), 415–428. doi: 10.34198/ejms.5221.415428. doi: 10.34198/ejms.5221.415428 |
[16] | M. S. Eliwa, A. A. Ziyad, M. El-Morshedy, Discrete Gompertz-G family of distributions for over-and under-dispersed data with properties, estimation, and applications, Mathematics, 8 (2020), 358. doi: 10.3390/math8030358. doi: 10.3390/math8030358 |
[17] | M. El-Morshedy, M. S. Eliwa, E. Altun, Discrete Burr-Hatke distribution with properties, estimation methods and regression model, IEEE Access, 8 (2020), 74359–74370. doi: 10.1109/ACCESS.2020.2988431. doi: 10.1109/ACCESS.2020.2988431 |
[18] | M. S. Eliwa, E. Altun, M. El-Dawoody, M. El-Morshedy, A new three-parameter discrete distribution with associated INAR(1) process and applications, IEEE Access, 8 (2020), 91150–91162. doi: 10.1109/ACCESS.2020.2993593. doi: 10.1109/ACCESS.2020.2993593 |
[19] | A. A. Al-Babtain, A. H. N. Ahmed, A. Z. Afify, A new discrete analog of the continuous Lindley distribution, with reliability applications, Entropy, 22 (2020), 1–18. doi: 10.3390/e22060603. doi: 10.3390/e22060603 |
[20] | M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: Properties, estimation and applications, J. Appl. Stat., 47 (2020), 354–375. doi: 10.1080/02664763.2019.1638893. doi: 10.1080/02664763.2019.1638893 |
[21] | M. El-Morshedy, E. Altun, M. S. Eliwa, A new statistical approach to model the counts of novel coronavirus cases, Math. Sci., 18 (2021), 1–14. doi: 10.1007/s40096-021-00390-9. doi: 10.1007/s40096-021-00390-9 |
[22] | S. Chakraborty, D. Chakravarty, J. Mazucheli, W. Bertoli, A discrete analog of Gumbel distribution: Properties, parameter estimation and applications, J. Appl. Stat., 48 (2021), 712–737. doi: 10.1080/02664763.2020.1744538. doi: 10.1080/02664763.2020.1744538 |
[23] | A. S. Eldeeb, M. Ahsan-Ul-Haq, A. Babar, A discrete analog of inverted Topp-Leone distribution: Properties, estimation and applications, Int. J. Anal. Appl., 19 (2021), 695–708. |
[24] | P. L. Ramos, F. Louzada, A distribution for instantaneous failures, Stats, 2 (2019), 247–258. doi: 10.3390/stats2020019. doi: 10.3390/stats2020019 |
[25] | V. Choulakian, M. A. Stephens, Goodness-of-fit tests for the generalized Pareto distribution, Technometrics, 43 (2001), 478–484. doi: 10.1198/00401700152672573. doi: 10.1198/00401700152672573 |
[26] | H. S. Bakouch, M. A. Jazi, S. Nadarajah, A new discrete distribution, Statistics, 48 (2014), 200–240. doi: 10.1080/02331888.2012.716677. doi: 10.1080/02331888.2012.716677 |
[27] | S. Chakraborty, D. Chakravarty, Discrete gamma distributions: Properties and parameter estimations, Commun. Stat. Methods, 41 (2012), 3301–3324. doi: 10.1080/03610926.2011.563014. doi: 10.1080/03610926.2011.563014 |