We consider the nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind defined by $ dX_t = \theta X_tdt+dY_t^{(1)}, t\geq 0, X_0 = 0 $ with an unknown parameter $ \theta > 0, $ where $ dY_t^{(1)} = e^{-t}dG_{a_{t}} $ and $ \{G_t, t\geq 0\} $ is a mean zero Gaussian process with the self-similar index $ \gamma\in (\frac{1}{2}, 1) $ and $ a_t = \gamma e^{\frac{t}{\gamma}} $. Based on the discrete observations $ \{X_{t_i}:t_i = i\Delta_n, i = 0, 1, \cdots, n\} $, two least squares type estimators $ \hat{\theta}_n $ and $ \tilde{\theta}_n $ of $ \theta $ are constructed and proved to be strongly consistent and rate consistent. We apply our results to the cases such as fractional Brownian motion, sub-fractional Brownian motion, bifractional Brownian motion and sub-bifractional Brownian motion. Moreover, the numerical simulations confirm the theoretical results.
Citation: Huantian Xie, Nenghui Kuang. Least squares type estimations for discretely observed nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind[J]. AIMS Mathematics, 2022, 7(1): 1095-1114. doi: 10.3934/math.2022065
We consider the nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind defined by $ dX_t = \theta X_tdt+dY_t^{(1)}, t\geq 0, X_0 = 0 $ with an unknown parameter $ \theta > 0, $ where $ dY_t^{(1)} = e^{-t}dG_{a_{t}} $ and $ \{G_t, t\geq 0\} $ is a mean zero Gaussian process with the self-similar index $ \gamma\in (\frac{1}{2}, 1) $ and $ a_t = \gamma e^{\frac{t}{\gamma}} $. Based on the discrete observations $ \{X_{t_i}:t_i = i\Delta_n, i = 0, 1, \cdots, n\} $, two least squares type estimators $ \hat{\theta}_n $ and $ \tilde{\theta}_n $ of $ \theta $ are constructed and proved to be strongly consistent and rate consistent. We apply our results to the cases such as fractional Brownian motion, sub-fractional Brownian motion, bifractional Brownian motion and sub-bifractional Brownian motion. Moreover, the numerical simulations confirm the theoretical results.
[1] | E. Azmoodeh, I. Morlanes, Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind, Statistics: A J. Theor. Appl. Stat., 49 (2015), 1–8. doi: 10.1080/02331888.2013.863888. doi: 10.1080/02331888.2013.863888 |
[2] | E. Azmoodeh, L. Viitasaari, Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind, Stat. Infer. Stoch. Pro., 18 (2015), 205–227. |
[3] | M. Balde, K. Es-Sebaiy, C. Tudor, Ergodicity and drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process of the second kind, Appl. Mat. Opt., 81 (2020), 785–814. doi: 10.1007/s00245-018-9519-4. doi: 10.1007/s00245-018-9519-4 |
[4] | O. Barndorff-Nielsen, Superposition of Ornstein-Uhlenbeck type processes, Theory Probab. Appl., 45 (2001), 175–194. doi: 10.1137/S0040585X97978166. doi: 10.1137/S0040585X97978166 |
[5] | O. Brndorff-Nielsen, N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. Roy. Stat. Soc., 63 (2001), 167–241. doi: 10.1111/1467-9868.00282. doi: 10.1111/1467-9868.00282 |
[6] | R. A. El-Nabulsi, Glaeske-kilbas-saigo fractional integration and fractional dixmier trace, Acta Math. Vietnam., 37 (2012), 149–160. |
[7] | R. A. El-Nabulsi, Fractional functional with two occurrences of integrals and asymptotic optimal change of drift in the black-scholes model, Acta Math. Vietnam., 40 (2015), 689–703. doi: 10.1007/s40306-014-0079-7. doi: 10.1007/s40306-014-0079-7 |
[8] | R. A. El-Nabulsi, Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube, Int. J. Nonlinear Mech., 93 (2017), 65–81. doi: 10.1016/j.ijnonlinmec.2017.04.010. doi: 10.1016/j.ijnonlinmec.2017.04.010 |
[9] | R. A. El-Nabulsi, A. K. Golmankhaneh, Generalized heat diffusion equations with variable coefficients and their fractalization from the black-scholes equation, Comm. Theor. Phys., 73 (2021), 10–17. |
[10] | B. EI Onsy, K. Es-Sebaiy, C. Tudor, Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process of the second kind, Commun. Stochastic Anal., 11 (2017), 65–81. |
[11] | B. EI Onsy, K. Es-Sebaiy, D. Ndiaye, Parameter estimation for discretely observed non-ergodic fractional Ornstein-Uhlenbeck process of the second kind, Braz. J. Probab. Stat., 32 (2018), 545–558. doi: 10.1214/17-BJPS353. doi: 10.1214/17-BJPS353 |
[12] | K. Es-Sebaiy, F. Alazemi, M. Al-Foraih, Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes, Acta Math. Sci., 39 (2019), 989–1002. |
[13] | A. Issaka, I. SenGupta, Analysis of variance based instruments for Ornstein-Uhlenbeck type models: swap and price index, Annals Financ., 13 (2017), 401–434. doi: 10.1007/s10436-017-0302-3. doi: 10.1007/s10436-017-0302-3 |
[14] | P. Kloeden, A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations, LMS J. Comput. Math., 10 (2007), 235–253. doi: 10.1112/S1461157000001388. doi: 10.1112/S1461157000001388 |
[15] | N. Kuang, On the collision local time of sub-bifractional Brownian Motions, Adv. Math. (China), 48 (2019), 627–640. |
[16] | N. Kuang, Y. Li, Berry-Esséen bounds and almost sure CLT for the quadratic variation of the sub-bifractional Brownian motion, Commun. Stat.-Simul. Comput., doi: 10.1080/03610918.2020.1740265. doi: 10.1080/03610918.2020.1740265 |
[17] | N. Kuang, B. Liu, Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation, Braz. J. Probab. Stat., 29 (2015), 778–789. doi: 10.1214/14-BJPS246. doi: 10.1214/14-BJPS246 |
[18] | N. Kuang, B. Liu, Least squares estimator for $\alpha$-sub-fractional bridges, Stat. Papers, 59 (2018), 893–912. doi: 10.1007/s00362-016-0795-2. doi: 10.1007/s00362-016-0795-2 |
[19] | N. Kuang, H. Xie, Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk, Ann. I. Stat. Math., 67 (2015), 75–91. doi: 10.1007/s10463-013-0439-4. doi: 10.1007/s10463-013-0439-4 |
[20] | N. Kuang, H. Xie, Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion, Ann. I. Stat. Math., 46 (2017), 215–229. doi: 10.1080/03610918.2014.957849. doi: 10.1080/03610918.2014.957849 |
[21] | M. Moshrefi-Torbati, J. K. Hammond, Physical and geometrical interpretation of fractional operators, J. Franklin I., 335 (1998), 1077–1086. doi: 10.1016/S0016-0032(97)00048-3. doi: 10.1016/S0016-0032(97)00048-3 |
[22] | M. Meerschaert, E. Nane, P. Vellaisamy, The fractional poisson process and the inverse stable subordinator, Electron. J. Probab., 16 (2011), 1600–1620. doi: 10.1214/EJP.v16-920. doi: 10.1214/EJP.v16-920 |
[23] | D. Nualart, The Malliavin calculus and related topics, 2 Eds., Berlin: Springer-Verlag, 2006. doi: 10.1007/3-540-28329-3. |
[24] | M. Roberts, I. SenGupta, Sequential hypothesis testing in machine learning, and crude oil price jump size detection, Appl. Math. Financ., 27 (2020), 374–395. doi: 10.1080/1350486X.2020.1859943. doi: 10.1080/1350486X.2020.1859943 |
[25] | N. Salmon, I. SenGupta, Fractional Barndorff-Nielsen and Shephard model: Applications in variance and volatility swaps, and hedging, arXiv: 2105.02325. |
[26] | L. C. Young, An inequality of the hölder type, connected with stieltjes integration, Acta Math., 67 (1936), 251–282. doi: 10.1007/BF02401743. doi: 10.1007/BF02401743 |
[27] | Q. Yu, G. Shen, M. Cao, Parameter estimation for Ornstein-Uhlenbeck processes of the second kind driven by $\alpha$-stable Lévy motions, Commun. Stat.-Theory M., 46 (2017), 10864–10878. doi: 10.1080/03610926.2016.1248786. doi: 10.1080/03610926.2016.1248786 |