Research article Special Issues

On the existence of almost periodic solutions of impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms

  • Received: 13 April 2021 Accepted: 15 September 2021 Published: 19 October 2021
  • MSC : 34C23, 34C25, 92D25

  • In this paper, by using the Mawhin's continuation theorem, some easily verifiable sufficient conditions are obtained to guarantee the existence of almost periodic solutions of impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms. Our result corrects the result obtained in [13]. An example and some remarks are given to illustrate the advantage of this paper.

    Citation: Li Wang, Hui Zhang, Suying Liu. On the existence of almost periodic solutions of impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms[J]. AIMS Mathematics, 2022, 7(1): 925-938. doi: 10.3934/math.2022055

    Related Papers:

  • In this paper, by using the Mawhin's continuation theorem, some easily verifiable sufficient conditions are obtained to guarantee the existence of almost periodic solutions of impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms. Our result corrects the result obtained in [13]. An example and some remarks are given to illustrate the advantage of this paper.



    加载中


    [1] D. D. Bainov, P. S. Simeonov, Impulsive differential equations: Periodic solution and applications, London: Longman, 1993. doi: 10.1201/9780203751206.
    [2] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Singpore: World Scientific, 1989. doi: 10.1142/0906.
    [3] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singpore: World Scientific, 1995. doi: 10.1142/2892.
    [4] X. N. Liu, L. S. Chen, Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos Solitons Fractals, 16 (2003), 311–320. doi: 10.1016/S0960-0779(02)00408-3. doi: 10.1016/S0960-0779(02)00408-3
    [5] Y. H. Xia, Global analysis of an impulsive delayed Lotka-Volterra competition system, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1597–1616. doi: 10.1016/j.cnsns.2010.07.014. doi: 10.1016/j.cnsns.2010.07.014
    [6] M. Liu, K. Wang, Asymptotic behavior of a stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations, Math. Comput. Model., 57 (2013), 909–925. doi: 10.1016/j.mcm.2012.09.019. doi: 10.1016/j.mcm.2012.09.019
    [7] Q. Wang, B. X. Dai, Y. M. Chen, Multiple periodic solutions of an impulsive predator-prey model with Holling-type Ⅳ functional response, Math. Comput. Model., 49 (2009), 1829–1836. doi: 10.1016/j.mcm.2008.09.008. doi: 10.1016/j.mcm.2008.09.008
    [8] X. L. Hu, G. R. Liu, J. R. Yan, Existence of multiple positive periodic solutions of delayed predator-prey models with functional responses, Comput. Math. Appl., 52 (2006), 1453–1462. doi: 10.1016/j.camwa.2006.08.030. doi: 10.1016/j.camwa.2006.08.030
    [9] K. H. Zhao, Y. Ye, Four positive periodic solutions to a periodic Lotka-Volterra predatory-prey system with harvesting terms, Nonlinear Anal. Real World Appl., 11 (2010), 2448–2455. doi: 10.1016/j.nonrwa.2009.08.001. doi: 10.1016/j.nonrwa.2009.08.001
    [10] K. H. Zhao, Y. K. Li, Multiple positive periodic solutions to a non-autonomous Lotka-Volterra predator-prey system with harvesting terms, Electron. J. Differ. Equ., 49 (2011), 1–11.
    [11] C. J. Xu, P. l. Li, Y. Guo, Global asymptotical stability of almost periodic solutions for a nonautonomous competing model with time-varying delays and feedback controls, J. Biol. Dyn., 13 (2019), 407–421. doi: 10.1080/17513758.2019.1610514. doi: 10.1080/17513758.2019.1610514
    [12] C. J. Xu, P. L. Li, Y. C. Pang, Existence and exponential stability of almost periodic solutions for neutral type BAM neural networks with distributed leakage delays, Math. Methods Appl. Sci., 40 (2017), 2177–2196. doi: 10.1002/mma.4132. doi: 10.1002/mma.4132
    [13] C. J. Xu, M. X. Liao, P. L. Li, Z. X. Liu, S. Yuan, New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays, Fuzzy Sets Syst., 411 (2021), 25–47. doi: 10.1016/j.fss.2020.03.016. doi: 10.1016/j.fss.2020.03.016
    [14] G. Stamov, I. Stamov, A. Martynyuk, T. Stamov, Almost periodic dynamics in a new class of impulsive reaction-diffusion neural networks with fractional-like derivatives, Chaos Solitons Fractals, 143 (2021), 110647. doi: 10.1016/j.chaos.2020.110647. doi: 10.1016/j.chaos.2020.110647
    [15] C. Xu, M. Liao, P. Li, Q. Xiao, S. Yuan, A new method to investigate almost periodic solutions for an Nicholson's blowflies model with time-varying delays and a linear harvesting term, Math. Biosci. Eng., 16 (2019), 3830–3840. doi: 10.3934/mbe.2019189. doi: 10.3934/mbe.2019189
    [16] E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal. Real World Appl., 13 (2012), 1489–1497. doi: 10.1016/j.nonrwa.2011.11.013. doi: 10.1016/j.nonrwa.2011.11.013
    [17] J. O. Alzabut, G. T. Stamov, E. Sermutlu, Positive almost periodic solutions for a delay logarithmic population model, Math. Comput. Model., 53 (2011), 161–167. doi: 10.1016/j.mcm.2010.07.029. doi: 10.1016/j.mcm.2010.07.029
    [18] Y. Xie, X. Li, Almost periodic solutions of single population model with hereditary effects, Appl. Math. Comput., 203 (2008), 690–697. doi: 10.1016/j.amc.2008.05.085. doi: 10.1016/j.amc.2008.05.085
    [19] Y. K. Li, Y. Ye, Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3190–3201. doi: 10.1016/j.cnsns.2013.03.014. doi: 10.1016/j.cnsns.2013.03.014
    [20] L. Wang, M. Yu, Favard's theorem of piecewise continuous almost periodic functions and its application, J. Math. Anal. Appl., 413 (2014), 35–46. doi: 10.1016/j.jmaa.2013.11.029. doi: 10.1016/j.jmaa.2013.11.029
    [21] C. Y. Zhang, Almost periodic type function and ergodicity, Springer, 2003.
    [22] C. Y. He, Almost periodic differential equations, Beijing: Higher Education Press, 1992.
    [23] C. Corduneanu, Almost periodic functions, 2 Eds, Chelsea, New York, 1989.
    [24] T. Diagana, Almost automorphic type and almost periodic type functions in abstract spaces, New York: Springer-Verlag, 2013. doi: 10.1007/978-3-319-00849-3.
    [25] A. M. Fink, Almost periodic differential equations, Berlin: Springer-Verlag, 1974. doi: 10.1007/BFb0070324.
    [26] M. Kostić, Almost periodic and almost automorphic type solutions to integro-differential equations, Berlin: De Gruyter, 2019. doi: 10.1515/9783110641851.
    [27] B. M. Levitan, Almost periodic functions, Gostekhi zdat, in Russian, Moscow, 1953.
    [28] G. M. N'Guerekata, Almost automorphic and almost periodic functions in abstract spaces, Boston: Springer, 2001. doi: 10.1007/978-1-4757-4482-8.
    [29] R. E. Gaines, J. L. Mawhin, Coincidence degree and nonlinear differential equation, Berlin: Springer-Verlay, 1977. doi: 10.1007/BFb0089537.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2174) PDF downloads(93) Cited by(3)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog