In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.
Citation: Xingyang Ye, Chuanju Xu. A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions[J]. AIMS Mathematics, 2021, 6(11): 12028-12050. doi: 10.3934/math.2021697
In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.
[1] | I. Podlubny, Fractional differential equations, Academic press, 1999. |
[2] | K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[3] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer, 2010. |
[4] | G. M. Mophou, Optimal control of fractional diffusion equation, Comput. Math. Appl., 61 (2011), 68–78. doi: 10.1016/j.camwa.2010.10.030 |
[5] | G. M. Mophou, G. M. N'Guérékata, Optimal control of a fractional diffusion equation with state constraints, Comput. Math. Appl., 62 (2011), 1413–1426. doi: 10.1016/j.camwa.2011.04.044 |
[6] | H. Antil, E. Otárola, A. J. Salgado, A fractional space-time optimal control problem: Analysis and discretization, SIAM J. Control Optim., 54 (2016), 1295–1328. doi: 10.1137/15M1014991 |
[7] | H. Antil, E. Otárola, An a posteriori error analysis for an optimal control problem involving the fractional Laplacian, IMA J. Numer. Anal., 38 (2018), 198–226. doi: 10.1093/imanum/drx005 |
[8] | H. Antil, E. Otárola, A. J. Salgado, Optimization with respect to order in a fractional diffusion model: Analysis, approximation and algorithmic aspects, J. Sci. Comput., 77 (2018), 204–224. doi: 10.1007/s10915-018-0703-0 |
[9] | M. D'Elia, C. Glusa, E. Otárola, A priori error estimates for the optimal control of the integral fractional Laplacian, SIAM J. Control Optim., 57 (2019), 2775–2798. doi: 10.1137/18M1219989 |
[10] | L. Zhang, Z. Zhou, Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation, Appl. Numer. Math., 143 (2019), 247–262. doi: 10.1016/j.apnum.2019.04.003 |
[11] | C. Glusa, E. Otárola, Error estimates for the optimal control of a parabolic fractional PDE, SIAM J. Numer. Anal., 59 (2021), 1140–1165. doi: 10.1137/19M1267581 |
[12] | E. Otárola, Fractional semilinear optimal control: Optimality conditions, convergence, and error analysis, arXiv: 2007.13848, 2020. |
[13] | P. Mu, L. Wang, C. Liu, A control parameterization method to solve the fractional-order optimal control problem, J. Optimiz. Theory App., 187 (2020), 234–247. doi: 10.1007/s10957-017-1163-7 |
[14] | Z. Gong, C. Liu, K. L. Teo, S. Wang, Y. Wu, Numerical solution of free final time fractional optimal control problems, Appl. Math. Comput., 405 (2021), 126270. |
[15] | W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. OptimIZ. Theory App., 180 (2019), 556–573. doi: 10.1007/s10957-018-1418-y |
[16] | X. Ye, C. Xu, Spectral optimization methods for the time fractional diffusion inverse problem, Numer. Math. Theory Me., 6 (2013), 499–519. doi: 10.4208/nmtma.2013.1207nm |
[17] | X. Ye, C. Xu, A spectral method for optimal control problem governed by the abnormal diffusion equation with integral constraint on the state, Sci. Sin. Math., 46 (2016), 1053–1070. |
[18] | N. Du, H. Wang, W. Liu, A fast gradient projection method for a constrained fractional optimal control J. Sci. Comput., 68 (2016), 1-20. doi: 10.1007/s10915-015-0125-1 |
[19] | S. Wu, T. Huang, A fast second-order parareal solver for fractional optimal control problems, J. Vib. Control, 24 (2018), 3418–3433. doi: 10.1177/1077546317705557 |
[20] | X. Ye, C. Xu, A spectral method for optimal control problems governed by the time fractional diffusion equation with control constraints, In: Spectral and high order methods for partial differential equations-ICOSAHOM 2012, 2014,403–414. |
[21] | X. Ye, C. Xu, A space-time spectral method for the time fractional diffusion optimal control problems, Adv. Differ. Equ., 2015 (2015), 1–20. doi: 10.1186/s13662-014-0331-4 |
[22] | S. S. Ezz-Eldien, E. H. Doha, D. Baleanu, A. H. Bhrawy, A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems, J. Vib. Control, 23 (2017), 16–30. doi: 10.1177/1077546315573916 |
[23] | M. A. Zaky, A. Mahmoud, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dynam., 91 (2018), 2667–2681. doi: 10.1007/s11071-017-4038-4 |
[24] | H. Antil, D. Verma, M. Warma, External optimal control of fractional parabolic PDEs, ESAIM Contr. Optim. Ca., 26 (2020), 1–33. doi: 10.1051/cocv/2019005 |
[25] | F. Wang, Z. Zhang, Z. Zhou, A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations, J. Comput. Appl. Math., 386 (2021), 113233. doi: 10.1016/j.cam.2020.113233 |
[26] | E. Otárola, An adaptive finite element method for the sparse optimal control of fractional diffusion, Numer. Meth. Part. D. E., 36 (2020), 302–328. doi: 10.1002/num.22429 |
[27] | X. Ye, C. Xu, A posteriori error estimates for the fractional optimal control problems, J. Inequal. Appl., 2015 (2015), 1–13. doi: 10.1186/1029-242X-2015-1 |
[28] | X. Li, C. Xu, The existence and uniqueness of the week solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), 1016–1051. doi: 10.4208/cicp.020709.221209a |
[29] | J. L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer-Verlag, 1971. |
[30] | Y. P. Chen, Y. J. Lin, A posteriori error estimates for hp finite element solutions of convex optimal control problems, J. Comput. Appl. Math., 235 (2011), 3435–3454. doi: 10.1016/j.cam.2011.02.004 |
[31] | Y. Maday, Analysis of spectral projectors in one-dimensional domains, Math. Comput., 55 (1990), 537–562. doi: 10.1090/S0025-5718-1990-1035939-1 |
[32] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, Berlin: Springer-Verlag, 2006. |
[33] | A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Berlin: Springer-Verlag, 1994. |