Research article Special Issues

A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions

  • Received: 27 May 2021 Accepted: 12 August 2021 Published: 18 August 2021
  • MSC : 35R11, 49J20, 65K10, 65M32, 65M70, 65N15

  • In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.

    Citation: Xingyang Ye, Chuanju Xu. A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions[J]. AIMS Mathematics, 2021, 6(11): 12028-12050. doi: 10.3934/math.2021697

    Related Papers:

  • In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.



    加载中


    [1] I. Podlubny, Fractional differential equations, Academic press, 1999.
    [2] K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [3] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer, 2010.
    [4] G. M. Mophou, Optimal control of fractional diffusion equation, Comput. Math. Appl., 61 (2011), 68–78. doi: 10.1016/j.camwa.2010.10.030
    [5] G. M. Mophou, G. M. N'Guérékata, Optimal control of a fractional diffusion equation with state constraints, Comput. Math. Appl., 62 (2011), 1413–1426. doi: 10.1016/j.camwa.2011.04.044
    [6] H. Antil, E. Otárola, A. J. Salgado, A fractional space-time optimal control problem: Analysis and discretization, SIAM J. Control Optim., 54 (2016), 1295–1328. doi: 10.1137/15M1014991
    [7] H. Antil, E. Otárola, An a posteriori error analysis for an optimal control problem involving the fractional Laplacian, IMA J. Numer. Anal., 38 (2018), 198–226. doi: 10.1093/imanum/drx005
    [8] H. Antil, E. Otárola, A. J. Salgado, Optimization with respect to order in a fractional diffusion model: Analysis, approximation and algorithmic aspects, J. Sci. Comput., 77 (2018), 204–224. doi: 10.1007/s10915-018-0703-0
    [9] M. D'Elia, C. Glusa, E. Otárola, A priori error estimates for the optimal control of the integral fractional Laplacian, SIAM J. Control Optim., 57 (2019), 2775–2798. doi: 10.1137/18M1219989
    [10] L. Zhang, Z. Zhou, Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation, Appl. Numer. Math., 143 (2019), 247–262. doi: 10.1016/j.apnum.2019.04.003
    [11] C. Glusa, E. Otárola, Error estimates for the optimal control of a parabolic fractional PDE, SIAM J. Numer. Anal., 59 (2021), 1140–1165. doi: 10.1137/19M1267581
    [12] E. Otárola, Fractional semilinear optimal control: Optimality conditions, convergence, and error analysis, arXiv: 2007.13848, 2020.
    [13] P. Mu, L. Wang, C. Liu, A control parameterization method to solve the fractional-order optimal control problem, J. Optimiz. Theory App., 187 (2020), 234–247. doi: 10.1007/s10957-017-1163-7
    [14] Z. Gong, C. Liu, K. L. Teo, S. Wang, Y. Wu, Numerical solution of free final time fractional optimal control problems, Appl. Math. Comput., 405 (2021), 126270.
    [15] W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. OptimIZ. Theory App., 180 (2019), 556–573. doi: 10.1007/s10957-018-1418-y
    [16] X. Ye, C. Xu, Spectral optimization methods for the time fractional diffusion inverse problem, Numer. Math. Theory Me., 6 (2013), 499–519. doi: 10.4208/nmtma.2013.1207nm
    [17] X. Ye, C. Xu, A spectral method for optimal control problem governed by the abnormal diffusion equation with integral constraint on the state, Sci. Sin. Math., 46 (2016), 1053–1070.
    [18] N. Du, H. Wang, W. Liu, A fast gradient projection method for a constrained fractional optimal control J. Sci. Comput., 68 (2016), 1-20. doi: 10.1007/s10915-015-0125-1
    [19] S. Wu, T. Huang, A fast second-order parareal solver for fractional optimal control problems, J. Vib. Control, 24 (2018), 3418–3433. doi: 10.1177/1077546317705557
    [20] X. Ye, C. Xu, A spectral method for optimal control problems governed by the time fractional diffusion equation with control constraints, In: Spectral and high order methods for partial differential equations-ICOSAHOM 2012, 2014,403–414.
    [21] X. Ye, C. Xu, A space-time spectral method for the time fractional diffusion optimal control problems, Adv. Differ. Equ., 2015 (2015), 1–20. doi: 10.1186/s13662-014-0331-4
    [22] S. S. Ezz-Eldien, E. H. Doha, D. Baleanu, A. H. Bhrawy, A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems, J. Vib. Control, 23 (2017), 16–30. doi: 10.1177/1077546315573916
    [23] M. A. Zaky, A. Mahmoud, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dynam., 91 (2018), 2667–2681. doi: 10.1007/s11071-017-4038-4
    [24] H. Antil, D. Verma, M. Warma, External optimal control of fractional parabolic PDEs, ESAIM Contr. Optim. Ca., 26 (2020), 1–33. doi: 10.1051/cocv/2019005
    [25] F. Wang, Z. Zhang, Z. Zhou, A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations, J. Comput. Appl. Math., 386 (2021), 113233. doi: 10.1016/j.cam.2020.113233
    [26] E. Otárola, An adaptive finite element method for the sparse optimal control of fractional diffusion, Numer. Meth. Part. D. E., 36 (2020), 302–328. doi: 10.1002/num.22429
    [27] X. Ye, C. Xu, A posteriori error estimates for the fractional optimal control problems, J. Inequal. Appl., 2015 (2015), 1–13. doi: 10.1186/1029-242X-2015-1
    [28] X. Li, C. Xu, The existence and uniqueness of the week solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), 1016–1051. doi: 10.4208/cicp.020709.221209a
    [29] J. L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer-Verlag, 1971.
    [30] Y. P. Chen, Y. J. Lin, A posteriori error estimates for hp finite element solutions of convex optimal control problems, J. Comput. Appl. Math., 235 (2011), 3435–3454. doi: 10.1016/j.cam.2011.02.004
    [31] Y. Maday, Analysis of spectral projectors in one-dimensional domains, Math. Comput., 55 (1990), 537–562. doi: 10.1090/S0025-5718-1990-1035939-1
    [32] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, Berlin: Springer-Verlag, 2006.
    [33] A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Berlin: Springer-Verlag, 1994.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2196) PDF downloads(128) Cited by(4)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog