In this paper, we investigate and obtain a new discrete $ q $-fractional version of the Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of $ q $-fractional damped difference systems with time delay. Moreover, we formulate the novel sufficient conditions such that the $ q $-fractional damped difference delayed systems is finite time stable. Our result extend the main results of the paper by Abdeljawad et al. [A generalized $ q $-fractional Gronwall inequality and its applications to nonlinear delay $ q $-fractional difference systems, J.Inequal. Appl. 2016,240].
Citation: Jingfeng Wang, Chuanzhi Bai. Finite-time stability of $ q $-fractional damped difference systems with time delay[J]. AIMS Mathematics, 2021, 6(11): 12011-12027. doi: 10.3934/math.2021696
In this paper, we investigate and obtain a new discrete $ q $-fractional version of the Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of $ q $-fractional damped difference systems with time delay. Moreover, we formulate the novel sufficient conditions such that the $ q $-fractional damped difference delayed systems is finite time stable. Our result extend the main results of the paper by Abdeljawad et al. [A generalized $ q $-fractional Gronwall inequality and its applications to nonlinear delay $ q $-fractional difference systems, J.Inequal. Appl. 2016,240].
[1] | F. M. Atici, P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Am. Math. Soc., 137 (2009), 981–989. |
[2] | G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Model., 51 (2010), 562–571. doi: 10.1016/j.mcm.2009.11.006 |
[3] | C. S. Goodrich, Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl., 59 (2010), 3489–3499. doi: 10.1016/j.camwa.2010.03.040 |
[4] | N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst., Ser. A, 29 (2011), 417–437. doi: 10.3934/dcds.2011.29.417 |
[5] | R. Floreanini, L. Vinet, Quantum symmetries of q-difference equations, J. Math. Phys., 36 (1995), 3134–3156. doi: 10.1063/1.531017 |
[6] | M. Marin, On existence and uniqueness in thermoelasticity of micropolar bodies, C. R. Acad. Sci. Paris, Ser. Ⅱ, 321 (1995), 475–480. |
[7] | R. Finkelstein, E. Marcus, Transformation theory of the q-oscillator, J. Math. Phys., 36 (1995), 2652–2672. doi: 10.1063/1.531057 |
[8] | M. Marin, Lagrange identity method for microstretch thermoelastic materials, J. Math. Anal. Appl., 363 (2010), 275–286. doi: 10.1016/j.jmaa.2009.08.045 |
[9] | T. Ernst, A Comprehensive Treatment of q-Calculus, Birkh$\ddot{a}$user, Basel, 2012. |
[10] | F. Jarad, T. Abdeljawad, D. Baleanu, Stability of q-fractional non-autonomous systems, Nonlinear Anal., Real World Appl., 14 (2013), 780–784. doi: 10.1016/j.nonrwa.2012.08.001 |
[11] | T. Abdeljawad, D. Baleanu, Caputo $q$-fractional initial value problems and a q-analogue Mittag-Leffler function, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4682–4688. doi: 10.1016/j.cnsns.2011.01.026 |
[12] | Z. S. I. Mansour, Linear sequential $q$-difference equations of fractional order, Fract. Calc. Appl. Anal., 12 (2009), 159–178. |
[13] | X. Li, Z. Han, X. Li, Boundary value problems of fractional q-difference Schr$\ddot{o}$dinger equations, Appl. Math. Lett., 46 (2015), 100–105. doi: 10.1016/j.aml.2015.02.013 |
[14] | J. Mao, Z. Zhao, C. Wang, The unique iterative positive solution of fractional boundary value problem with q-difference, Appl. Math. Lett., 100 (2020), 106002. doi: 10.1016/j.aml.2019.106002 |
[15] | Y. Liang, H. Yang, H. Li, Existence of positive solutions for the fractional $q$-difference boundary value problem, Adv. Differ. Equ., 2020 (2020), 1–11. doi: 10.1186/s13662-019-2438-0 |
[16] | M. H. Annaby, Z. S. Mansour, $q$-fractional Calculus and Equations. Lecture Notes in Mathematics, vol. 2056, Springer, Heidelberg, 2012. |
[17] | T. Abdeljawad, J. Alzabut, D. Baleanu, A generalized $q$-fractional Gronwall inequality and its applications to nonlinear delay $q$-fractional difference systems, J. Inequal. Appl., 2016 (2016), 240. doi: 10.1186/s13660-016-1181-2 |
[18] | T. Abdeljawad, J. Alzabut, The $q$-fractional analogue for Gronwall-type inequality, J. Funct. Spaces, 2013 (2013), 543839. |
[19] | F. Du, B. Jia, A generalized fractional $(q, h)$-Gronwall inequality and its applications to nonlinear fractional delay $(q, h)$-difference systems, Math. Methods Appl. Sci., 44 (2021), 10513–10529. doi: 10.1002/mma.7426 |
[20] | J. Sheng, W. Jiang, Existence and uniqueness of the solution of fractional damped dynamical systems, Adv. Differ. Equ., 2017 (2017), 16. doi: 10.1186/s13662-016-1049-2 |
[21] | M. P. Lazarevic, A. M. Spasic, Finite-time stability analysis of fractional order time-delay systems: Gronwall approach, Math. Comput. Model., 49 (2009), 475–481. doi: 10.1016/j.mcm.2008.09.011 |
[22] | V. N. Phat, N. T. Thanh, New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach, Appl. Math. Lett., 83 (2018), 169–175. doi: 10.1016/j.aml.2018.03.023 |
[23] | R. Wu, Y. Lu, L. Chen, Finite-time stability of fractional delayed neural networks, Neurocomputing, 149 (2015), 700–707. doi: 10.1016/j.neucom.2014.07.060 |
[24] | M. Li, J. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 24 (2018), 254–265. |
[25] | F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. |
[26] | F. Du, B. Jia, Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett., 98 (2019), 233–239. doi: 10.1016/j.aml.2019.06.017 |
[27] | F. Du, B. Jia, Finite time stability of fractional delay difference systems: A discrete delayed Mittag-Leffler matrix function approach, Chaos, Solitons and Fractals, 141 (2020), 110430. doi: 10.1016/j.chaos.2020.110430 |
[28] | K. Ma, S. Sun, Finite-time stability of linear fractional time-delay $q$-difference dynamical system, J. Appl. Math. Comput., 57 (2018), 591–604. doi: 10.1007/s12190-017-1123-2 |
[29] | P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discr. Math., 1 (2007), 311–323. doi: 10.2298/AADM0701072C |
[30] | M. Mansour, An asymptotic expansion of the $q$-gamma function $\Gamma_q (x)$, J. Nonlinear Math. Phys., 13 (2006), 479–483. doi: 10.2991/jnmp.2006.13.4.2 |
[31] | R. A. Adams, C. Essex, Calculus A Complete Course, Seventh Edition, Pearson Canada, Toronto, 2010. |
[32] | N. Phuong, F. Sakar, S. Etemad, S. Rezapour, A novel fractional structure of a multi-order quantum multi-integro-differential problem, Adv. Differ. Equ., 2020 (2020), 633. doi: 10.1186/s13662-020-03092-z |
[33] | R.Butt, T. Abdeljawad, M. Alqudah, M. Rehman, Ulam stability of Caputo q-fractional delay difference equation: $q$-fractional Gronwall inequality approach, J. Inequal. Appl., 2019 (2019), 305. doi: 10.1186/s13660-019-2257-6 |
[34] | L. Franco-Péreza, G. Fernández-Anaya, L. A. Quezada-Téllez, On stability of nonlinear nonautonomous discrete fractional Caputo systems, J. Math. Anal. Appl., 487 (2020), 124021. doi: 10.1016/j.jmaa.2020.124021 |