In this paper, we introduce the notions of $ q $-mean square integral for stochastic processes and co-ordinated stochastic processes. Furthermore, we establish some new quantum Hermite-Hadamard type inequalities for convex stochastic processes and co-ordinated stochastic processes via newly defined integrals. It is also revealed that the results presented in this research transformed into some already proved results by considering the limits as $ q, \; q_{1}, \; q_{2}\rightarrow 1^{-} $ in the newly obtained results.
Citation: Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai. Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes[J]. AIMS Mathematics, 2021, 6(11): 11989-12010. doi: 10.3934/math.2021695
In this paper, we introduce the notions of $ q $-mean square integral for stochastic processes and co-ordinated stochastic processes. Furthermore, we establish some new quantum Hermite-Hadamard type inequalities for convex stochastic processes and co-ordinated stochastic processes via newly defined integrals. It is also revealed that the results presented in this research transformed into some already proved results by considering the limits as $ q, \; q_{1}, \; q_{2}\rightarrow 1^{-} $ in the newly obtained results.
[1] | H. Agahi, A. Babakhani, On fractional stochastic inequalities related to Hermite-Hadamard and Jensen types for convex stochastic processes, Aequationes Math., 90 (2016), 1035–1043. doi: 10.1007/s00010-016-0425-z |
[2] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Ineqaul. Appl., 2017 (2017), 1–10. doi: 10.1186/s13660-016-1272-0 |
[3] | P. Agarwal, Some inequalities involving Hadamard-type $k$ -fractional integral operators, Math. Meth. Appl. Sci., 40 (2017), 3882–3891. doi: 10.1002/mma.4270 |
[4] | M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048 |
[5] | M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{\pi _{2}}$-derivatives, Adv. Differ. Equ., 2021 (2021), 1–12. doi: 10.1186/s13662-020-03162-2 |
[6] | M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 1–21. doi: 10.1186/s13662-020-03162-2 |
[7] | M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H.Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 1–26. doi: 10.1186/s13662-020-03162-2 |
[8] | M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. doi: 10.1515/math-2021-0015 |
[9] | M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020 |
[10] | M. Alomari, $q$-Bernoulli inequality, Turk. J. Sci., 3 (2018), 32–39. |
[11] | N. Alp, M. Z. Sarikaya, M. Kunt İ. İşcan, $q$ -Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. doi: 10.1016/j.jksus.2016.09.007 |
[12] | N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356. |
[13] | W. Al-Salam, Some fractional $q$-integrals and $q$ -derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. |
[14] | D. Barraez, L. Gonzalez, N. Merentes, A. M. Moros, On $ h-$convex stochastic process, Mathematica Aeterna, 5 (2015), 571–581. |
[15] | F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments, Springer Science and Business Media, 2010. |
[16] | S. Bermudo, P. Kórus, J. N. Valdés, On $q$ -Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung., 162 (2020), 364–374. doi: 10.1007/s10474-020-01025-6 |
[17] | A. Bokulich, G. Jaeger, Philosophy of Quantum Information Theory and Entaglement, Cambridge Uniersity Press, 2010. |
[18] | H. Budak, M. Z. Sarikaya, A new Hermite-Hadamard inequality for $h$-convex stochastic processes, Ntmsci., 7 (2019), 356–363. |
[19] | H. Budak, Sarikaya, On generalized stochastic fractional integrals and related inequalities, Mod. Stoch-Theory App., 5 (2018), 471–481. |
[20] | H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. |
[21] | H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. doi: 10.22199/issn.0717-6279-2021-01-0013 |
[22] | H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6 |
[23] | H. Budak, M. A. Ali, N. Alp, Y. M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., 2021. |
[24] | S. I. Butt, S. Yousuf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solition Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025 |
[25] | S. I. Butt, A. O. Akdemir, N. Nadeem, N. Malaiki, İ. İ şcan, T. Abdeljawad, $\left(m, n\right) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the coordinates, AIMS Math., 6 (2021), 4677–4690. doi: 10.3934/math.2021275 |
[26] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. |
[27] | S. S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 4 (2001), 775–788. |
[28] | T. Ernst, The History of $Q$-Calculus And New Method, Sweden: Department of Mathematics, Uppsala University, 2000. |
[29] | T. Ernst, A Comprehensive Treatment of $q$ -Calculus, Springer Basel, 2012. |
[30] | L. Gonzalez, N. Merentes, M. Valera-Lopez, Some estimates on the Hermite-Hadamard inequality through convex and quasi-convex stochastic processes, Mathematica Aeterna, 5 (2015), 745–767. |
[31] | F. M. Hafiz, The fractional calculus for some stochastic processes, Stoch. Anal. Appl., 22 (2004), 507–523. doi: 10.1081/SAP-120028609 |
[32] | W. U. Haq, Certain inequalities of Hermite-Hadamard-Fejer type involving $q$-stochastic integral, Iran. J. Sci. Technol., 44 (2020), 487–491. doi: 10.1007/s40995-020-00853-z |
[33] | F. H. Jackson, On a $q$-definite integrals, Quarterly J. Pure Appl. Math., 41 (1910), 193–203. |
[34] | S. Jhanthanam, T. Jessada, S. K. Ntouyas, N. Kamsing, On $q$-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632 |
[35] | V. Kac, P. Cheung, Quantum Calculus, Springer, 2001. |
[36] | V. Karahan, O. K. U. R. Nrgül, İ. İşcan, Hermite-Hadamard type inequalities for convex stochastic processes on $n$ -coordinates, Turk. J. Math. Comput. Sci., 10 (2018), 256–262. |
[37] | M. A. Khan, M. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a green function, Adv. Differ. Equ., 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0 |
[38] | D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. doi: 10.1007/s00010-011-0090-1 |
[39] | D. Kotrys, Remarks on strongly convex stochastic processes, Aequationes Math., 86 (2013), 91–98. doi: 10.1007/s00010-012-0163-9 |
[40] | M. A. Latif, S. S. Dragomir, E. Momoniat, Some $q$-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud University-Science, 29 (2017), 263–273. doi: 10.1016/j.jksus.2016.07.001 |
[41] | W. Liu, Z. Hefeng, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2016), 501–522. |
[42] | S. Maden, M. Tomar, E. Set, Hermite-Hadamard type inequalities for $s-$convex stochastic processes in first sense, Pure Appl. Math Lett., 2015 (2015), 1–7. |
[43] | J. Materano, N. Merentes, M. Valera-Lopez, Some estimates on the Simpson's type inequalities through $s$-convex and quasi-convex stochastic processes, Mathematica Aeterna, 5 (2015), 673–705. |
[44] | K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184–197. doi: 10.1007/BF02190513 |
[45] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. |
[46] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. |
[47] | E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via $\eta $-quasiconvexity, Adv. Differ. Equ., 2019 (2019), 1–12. doi: 10.1186/s13662-018-1939-6 |
[48] | M. E. Özdemir, M. A. Latif, A. O. Akdemir, On some Hadamard-type inequalities for product of two $h$-convex functions on the co-ordinates, Turk. J. Sci., 1 (2016), 41–58. |
[49] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. |
[50] | S. Rashid, S. I. Butt, S. Kanwal, H. Ahmed, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized -convex functions with applications, J. Funct. Spaces, 2021 (2021). |
[51] | M. Z. Sarikaya, H. Yaldiz, H. Budak, Some integral inequalities for convex stochastic process, Acta Math. Univ. Comenian., 85 (2016), 155–164. |
[52] | E. Set, M. Tomar, S. Maden, Hermite-Hadamard type inequalities for $s-$convex stochastic processes in the second sense, Turk. J. Anal. Number Theory, 2 (2014), 202–207. doi: 10.12691/tjant-2-6-3 |
[53] | E. Set, M. Z. Sarikaya, M. Tomar, Hermite-Hadamard type inequalities for coordinated convex stochastic processes, Mathematica Aeterna, 5 (2015), 363–382. |
[54] | A. Skowroński, On some properties of J-convex stochastic processes, Aequationes Math., 44 (1992), 249–258. doi: 10.1007/BF01830983 |
[55] | K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer, Dordrecht, 1991. |
[56] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 1–19. |
[57] | M. Tomar, E. Set, S. Maden, Hermite-Hadamard type inequalities for log-convex stochastic processes, J. New Theory, 2 (2015), 23–32. |
[58] | M. Tomar, E. Set, N. O. Bekar, On Hermite-Hadamard type inequalities for strongly-$\log $ convex stochastic processes, J. Global Eng. Stud., 1 (2014), 53–61. |
[59] | M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476 |
[60] | S. Zhao, S. I. Butt, W. Nazir, J. Nasir, M. Umar, Y. Liu, Some Hermite-Jensen-Mercer type inequalities for $k$-Caputo-fractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0 |
[61] | J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tilli, Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020). |