Research article

A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time

  • Received: 04 June 2024 Revised: 04 July 2024 Accepted: 08 July 2024 Published: 12 July 2024
  • MSC : 26A33, 35B44, 74K20, 93D23

  • In the present paper, we examine a suspension bridges model subject to frictional damping, a fractional delay term, and a source term. First, we prove the existence of global solutions of the problem. Second, for small initial data, we establish the exponential stability of the system by using the energy method. Additionally, we show that if the initial energy assumes a negative value, the solution blows up in finite time.

    Citation: Zayd Hajjej. A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time[J]. AIMS Mathematics, 2024, 9(8): 22022-22040. doi: 10.3934/math.20241070

    Related Papers:

  • In the present paper, we examine a suspension bridges model subject to frictional damping, a fractional delay term, and a source term. First, we prove the existence of global solutions of the problem. Second, for small initial data, we establish the exponential stability of the system by using the energy method. Additionally, we show that if the initial energy assumes a negative value, the solution blows up in finite time.



    加载中


    [1] M. Mainardi, E. Bonetti, The application of real-order derivatives in linear viscoelasticity, In: Progress and trends in rheology II, Heidelberg: Steinkopff, 1988, 64–67. https://doi.org/10.1007/978-3-642-49337-9_11
    [2] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their Solution and some of their applications, London: Academic Press, 1999.
    [3] P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615
    [4] Y. Rossikhin, M. Shitikova, Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges, J. Eng. Mech., 124 (1998), 1029–1036. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1029) doi: 10.1061/(ASCE)0733-9399(1998)124:9(1029)
    [5] E. Berchio, A. Falocchi, A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions, Ann. Mat. Pur. Appl., 200 (2021), 1651–1681. https://doi.org/10.1007/s10231-020-01054-6 doi: 10.1007/s10231-020-01054-6
    [6] P. J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal., 98 (1987) 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232
    [7] J. Glover, A. C. Lazer, P. J. McKenna, Existence and stability of large scale nonlinear oscillation in suspension bridges, Z. Angew. Math. Phys., 40 (1989), 172–200. https://doi.org/10.1007/BF00944997 doi: 10.1007/BF00944997
    [8] I. Bochicchio, C. Giorgi, E. Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations, J. Math. Anal. Appl., 402 (2013), 319–333. https://doi.org/10.1016/j.jmaa.2013.01.036 doi: 10.1016/j.jmaa.2013.01.036
    [9] Q. Ma, C. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differential Equations, 246 (2009), 1003–1014. https://doi.org/10.1016/j.jde.2009.02.022 doi: 10.1016/j.jde.2009.02.022
    [10] A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst. A, 35 (2015), 5879–5908. https://doi.org/10.3934/dcds.2015.35.587 doi: 10.3934/dcds.2015.35.587
    [11] F. Gazzola, Mathematical models for suspension bridges: Nonlinear structural instability, modeling, simulation and applications, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-15434-3
    [12] M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., 106 (2014), 181–734. https://doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011
    [13] E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: Mathematical answers to some long-standing questions, Nonlinear Anal. Real World Appl., 28 (2016), 91–125. https://doi.org/10.1016/j.nonrwa.2015.09.005 doi: 10.1016/j.nonrwa.2015.09.005
    [14] Y. Wang, Finite time blow-up and global solutions for fourth-order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713–733. https://doi.org/10.1016/j.jmaa.2014.04.015 doi: 10.1016/j.jmaa.2014.04.015
    [15] W. Liu, H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equ. Appl., 24 (2017), 67. https://doi.org/10.1007/s00030-017-0491-5 doi: 10.1007/s00030-017-0491-5
    [16] S. A. Messaoudi, S. E. Mukiawa, A suspension bridge problem: Existence and stability, In: Mathematics across contemporary sciences, Cham: Springer, 2017,151–165. https://doi.org/10.1007/978-3-319-46310-0_9
    [17] M. M. Cavalcanti, W. J. Corrêa, R. Fukuoka, Z. Hajjej, Stabilization of a suspension bridge with locally distributed damping, Math. Control Signals Syst., 30 (2018), 20. https://doi.org/10.1007/s00498-018-0226-0 doi: 10.1007/s00498-018-0226-0
    [18] A. D. D. Cavalcanti, M. M. Cavalcanti, W. J. Corrêa, Z. Hajjej, M. S. Cortés, R. Véjar Asem, Uniform decay rates for a suspension bridge with locally distributed nonlinear damping, J. Franklin Inst., 357 (2020), 2388–2419. https://doi.org/10.1016/j.jfranklin.2020.01.004 doi: 10.1016/j.jfranklin.2020.01.004
    [19] Z. Hajjej, S. A. Messaoudi, Stability of a suspension bridge with structural damping, Ann. Polon. Math., 125 (2020), 59–70. https://doi.org/10.4064/ap191023-4-2 doi: 10.4064/ap191023-4-2
    [20] Z. Hajjej, M. M. Al-Gharabli, S. A. Messaoudi, Stability of a suspension bridge with a localized structural damping, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), 1165–1181. https://doi.org/10.3934/dcdss.2021089 doi: 10.3934/dcdss.2021089
    [21] Z. Hajjej, General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term, Z. Angew. Math. Phys., 72 (2021), 72–90. https://doi.org/10.1007/s00033-021-01526-6 doi: 10.1007/s00033-021-01526-6
    [22] S. A. Messaoudi, S. E. Mukiawa, Existence and decay of solutions to a viscoelastic plate equations, Electron. J. Differential Equations, 2016 (2016), 1–14.
    [23] S. A. Messaoudi, S. E. Mukiawa, C. D. Enyi, Finite dimensional global attractor for a suspension bridge problem with delay, C. R. Acad. Sci. Paris Ser., 354 (2016), 808–824. https://doi.org/10.1016/j.crma.2016.05.014 doi: 10.1016/j.crma.2016.05.014
    [24] S. P. Wang, Q. Z. Ma, Uniform attractors for the non-autonomous suspension bridge equation with time delay, J. Inequal. Appl., 2019 (2019), 180. https://doi.org/10.1186/s13660-019-2133-4 doi: 10.1186/s13660-019-2133-4
    [25] S. E. Mukiawa, Stability result of a suspension bridge Problem with time-varying delay and time-varying weight, Arab. J. Math., 10 (2021), 659–668. https://doi.org/10.1007/s40065-021-00345-x doi: 10.1007/s40065-021-00345-x
    [26] M. Akil, Y. Chitour, M. Ghader, Ali Wehbe, Stability and exact controllability of a timoshenko system with only one fractional damping on the boundary, Asymptot. Anal., 119 (2020), 221–280. https://doi.org/10.3233/ASY-191574 doi: 10.3233/ASY-191574
    [27] M. Akil, A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Relat. Fields, 9 (2019), 97–116. https://doi.org/10.3934/mcrf.2019005 doi: 10.3934/mcrf.2019005
    [28] R. Aounallah, A. Benaissa, A. Zaraï, Blow-up and asymptotic behavior for a wave equation with a time delay condition of fractional type, Rend. Circ. Mat. Palermo, II Ser., 70 (2021), 1061–1081. https://doi.org/10.1007/s12215-020-00545-y doi: 10.1007/s12215-020-00545-y
    [29] A. Benaissa, H. Benkhedda, Global existence and energy decay of solutions to a wave equation with a dynamic boundary dissipation of fractional derivative type, Z. Anal. Anwend., 37 (2018), 315–339. https://doi.org/10.4171/ZAA/1616 doi: 10.4171/ZAA/1616
    [30] B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inf., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
    [31] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935–958. https://doi.org/10.57262/die/1356038593 doi: 10.57262/die/1356038593
    [32] Z. Liu, S. Zheng, Semigroups associated with dissipative systems, London: Chapman & Hall/CRC, 1999.
    [33] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer 1983. https://doi.org/10.1007/978-1-4612-5561-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(590) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog