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1. Introduction

Suspension bridges are marvels of engineering, designed to span vast distances and connect areas
separated by natural obstacles like rivers, valleys, and urban landscapes. Their design typically consists
of a deck suspended from cables, which are anchored at both ends and pass over towering piers.
This structure not only allows for impressive spans, but also provides aesthetic appeal and functional
efficiency. Despite these advantages, suspension bridges are prone to dynamic instabilities that arise
from various factors, such as wind forces, vehicular traffic, and seismic activities. Addressing these
instabilities is crucial for ensuring the safety and longevity of the bridge. The dynamic behavior of
suspension bridges is complex and influenced by multiple factors. Wind-induced vibrations can lead to
significant oscillations. Similarly, traffic loads cause dynamic forces that can resonate with the natural
frequencies of the bridge. Seismic activities add another layer of complexity, introducing sudden
and powerful forces that can induce oscillations and potential structural damage. These dynamic
instabilities, if not properly managed, can compromise the structural integrity and serviceability of the
bridge. To mitigate these dynamic instabilities, engineers incorporate various damping mechanisms
into the design of suspension bridges. Damping is the process of dissipating the energy of oscillations,
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thereby reducing their amplitude and preventing resonant vibrations. One effective method is frictional
damping, which relies on friction forces to dissipate energy. Frictional dampers can be installed in
strategic locations within the bridge structure to absorb vibrational energy, converting it into heat and
thus stabilizing the bridge. In addition to frictional damping, advanced control techniques such as
fractional delay offer significant potential for enhancing the stability of suspension bridges. Fractional
delay, a concept derived from fractional calculus, extends the traditional notion of time delay to
fractional orders. This approach allows for more precise and flexible control of dynamic systems.
By incorporating fractional delay into the damping system, engineers can achieve better control over
the phase and amplitude of vibrations, leading to more effective stabilization. In fact, fractional
computing in modeling enhances the ability to capture the complex dynamics of natural systems, and
improves control performance beyond what is achievable with integer-order controls. This approach is
particularly relevant in fields such as engineering, quantum mechanics, nuclear physics, and biological
phenomena like fluid flow (see for example [1–3]). For example, in structural dynamics, fractional-
order derivatives provide a more nuanced representation of bridge structures by accurately modeling
systems with memory effects and non-local behaviors. These derivatives better reflect the viscoelastic
and nonlinear properties inherent in suspension bridges, capturing the distributed nature of forces and
displacements and accounting for memory effects that impact the bridge’s dynamic response over time.
Additionally, the frequency-dependent nature of fractional derivatives allows for damping that varies
with oscillation frequency, beneficial for controlling specific vibration modes and enhancing overall
stability. This characteristic is especially useful for studying the long-term response of bridges to
dynamic loads or environmental conditions (see also [4]).

In this paper, we are interested in the study of the asymptotic behavior and blow-up of suspension
bridges in the domain Ω = (0, π)× (−d, d), where d << π, and with the presence of frictional damping,
fractional delay, and a nonlinear source term. This can be modeled by the following system:

vtt(x, y, t) + ∆2v(x, y, t) + a0vt(x, y, t)
+a1∂

α,β
t v (x, y, t − τ) = v|v|p−2, in Ω × (0,+∞),

v(0, y, t) = vxx(0, y, t) = v(π, y, t) = vxx(π, y, t) = 0, (y, t) ∈ (−d, d) × (0,+∞),

vyy(x,±d, t) + µvxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,+∞),

vyyy(x,±d, t) + (2 − µ)vxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,+∞),

v(x, y, 0) = v0(x, y), vt(x, y, 0) = v1(x, y), in Ω,

vt(x, y, t − τ) = f (x, y, t − τ), t ∈ (0, τ),

(1.1)

where p > 2 and the damping coefficients a0 and a1 are positive reals satisfying

2a1β
α−1 < a0. (1.2)

The constant µ, known as the Poisson ratio, typically falls within the range (−1, 1
2 ) for physical reasons

(see [5] for more details). It is approximately 0.3 for metals and between 0.1 and 0.2 for concrete.
Consequently, we assume that 0 < µ < 1

2 .
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The constant τ > 0 represents the time delay. The operator ∂α,βt is the exponential fractional
derivative of order α, defined as

∂
α,β
t v(t) =

1
Γ(1 − α)

t∫
0

(t − s)−αe−β(t−s) dv
ds

(s)ds, 0 < α < 1, β > 0.

The first results concerning suspension bridges are due to McKenna and Walter [6] and McKenna
et al. [7], where the authors provided a model depicting the dynamics of a suspension bridge and
established the presence of nonlinear oscillations. Bochicchio et al. [8] and Ma and Zhong [9]
examined the asymptotic dynamics and global attractors for coupled suspension bridge equations,
respectively. In a recent work, a new suspension bridge model using a plate was proposed by Ferrero
and Gazzola [10]. For further details on suspension bridge models, see [11]. The analysis of the
bending and stretching energies for the model in [10] was detailed in [12]. Later, in their work, Berchio
et al. [13] investigated the structural instability of nonlinear plates used to model suspension bridges.
Recently, several studies have addressed the uniform stability and finite time blow-up of suspension
bridges. In [14], Wang considered the problem

vtt + ∆
2v + a0vt + av = v|v|p−2,

with the same boundary conditions as in (1.1), and where a = a(x, y, t) is a sign-changing and bounded
measurable function. The author established necessary and sufficient conditions for the uniqueness and
existence of global solutions as well as the finite time blow-up of these solutions. Next, by considering
a nonlinear damping (of the form |vt|

m−2vt) instead of a linear one, Liu et al. [15] extended the work
of Wang [14]. In [16], the authors considered system (1.1) in the case where a1 = 0, and with a
general source term of the form h(v). Through the use of multiplier techniques, the authors proved
an exponential decay rate of energy. Following this, Cavalcanti et al. [17] (resp. [18]) analyzed
problem (1.1) with a1 = 0 and localized linear (resp. nonlinear) damping in the form a0(x, y)vt

(resp. a0(x, y)g(vt)), concentrated around the boundary neighborhood, and established the exponential
stability in both cases. It is also worth mentioning the works [19–22], which focus on suspension
bridges and present other types of damping, including structural and viscoelastic damping.

On the other hand, in the presence of the time delay, the equation (with the same boundary
conditions as in (1.1))

vtt + ∆
2v + a0vt + a1vt(x, y, t − τ) + h(v) = f (x, y),

has been studied respectively by Messaoudi et al. [23] and Wang [24]. In both works, the authors
proved the existence of uniform attractors. Later, in [25], Mukiawa studied the last equation, in the
case f = 0, a0 = a0(t), a1 = a1(t), and τ = τ(t), and he established a stability result under some
conditions on the delay and weight functions. Let us also mention the works [26–29], which treated
the stability of wave equations and the Timoshenko system with fractional damping. Motivated by
all these works, in this paper we are interested in the exponential stability and finite time blow-up of
solutions of system (1.1). This research appears to be the first to address this particular issue. Inspired
by previous studies, our aim is twofold:

- To extend known exponential decay results for suspension bridges with time delay to those with
fractional time delay.
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- To investigate the blow-up of solutions typically caused by the source term when initial energy is
negative.

The paper is organized as follows: In the next section, we study the well-posedness of system (1.1).
First, we prove the existence of a unique local solution of (1.1). Second, we show that this solution is
global in time. The third section is devoted to establishing the exponential decay of energy of (1.1) for
small initial data by constructing a suitable Lyapunov functional. We prove the blow-up of solutions
for negative initial energy in the last section.

2. Wellposedness of system (1.1)

2.1. Local existence

In this subsection, we are concerned with reformulating model (1.1) into a first-order system. Here
and what follows, we use ⟨·, ·⟩ and ∥ · ∥ to denote the inner product and the usual norm in L2(Ω),
respectively.

We define the space
W = {v ∈ H2(Ω) : v = 0 on {0, π} × (−d, d)},

with the scalar product

(u, v)W =

∫
Ω

[
∆u∆v + (1 − µ)(2uxyvxy − uxxvyy − uyyvxx)

]
dxdy.

We note that (W, (·, ·)W) is a Hilbert space, and we have that the norm ∥.∥W is equivalent to the H2−norm
(see [10, Lemma 4.1]).

We then have the following.

Lemma 2.1. [10] If 0 < µ < 1
2 and f ∈ L2(Ω), then there is a unique u ∈ W such that, for all v ∈ W,

we have

(u, v)W =

∫
Ω

f u. (2.1)

The function v ∈ W satisfying (2.1) is known as the weak solution to the stationary problem
∆2v = f ,
v(0, y) = v(π, y) = vxx(0, y) = vxx(π, y) = 0,
vyy(x,±d) + µvxx(x,±d) = vyyy(x,±d) + (2 − µ)vxxy(x,±d) = 0.

(2.2)

Lemma 2.2. [14] Let v ∈ W and 1 ≤ r < +∞. Then, we have

∥v∥rr ≤ Ce∥v∥rW , (2.3)

for some positive constant Ce = Ce(Ω, r), where ∥ · ∥r is the usual Lr(Ω)-norm.

Lemma 2.3. [30] Let φ be the function

φ(ζ) = |ζ |
2α−1

2 , ζ ∈ R, 0 < α < 1.

AIMS Mathematics Volume 9, Issue 8, 22022–22040.



22026

Then, the relationship between the ’input’ U and the ’output’ O of the system
ψt(x, y, ζ, t) + (ζ2 + β)ψ(x, y, ζ, t) − U(x, y, t)φ(ζ) = 0, ζ ∈ R, t > 0, β > 0,
ψ(x, y, ζ, 0) = 0,

O(t) = π−1 sin(απ)
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζ
(2.4)

is given by
O = I1−α,βU,

where

Iα,βv(t) =
1
Γ(α)

∫ t

0
(t − s)α−1e−β(t−s)v(s)ds.

We need also the next lemma.

Lemma 2.4. [29] If λ ∈ Dβ = C\
]
−∞,−β

[
, then

+∞∫
−∞

φ2(ζ)
λ + β + ζ2 dζ =

π

sin(απ)
(λ + β)α−1.

As in [31], we introduce the new variable

z(x, y, ρ, t) = vt(x, y, t − τρ), (x, y) ∈ Ω, ρ ∈ (0, 1), t ≥ 0. (2.5)

It is easy to see that

τzt(x, y, ρ, t) + zρ(x, y, ρ, t) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1), t ≥ 0. (2.6)

Consequently, Lemma 2.3, (2.5), and (2.6) give us the following equivalent (to (1.1)) system:

vtt(x, y, t) + ∆2v(x, y, t) + a0vt(x, y, t)

+κ

∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζ = v|v|p−2, (x, y) ∈ Ω, t > 0,

ψt(x, y, ζ, t) + (ζ2 + β)ψ(x, y, ζ, t) − z(x, 1, t)φ(ζ) = 0, (x, y) ∈ Ω, ζ ∈ R, t > 0,

τzt(x, y, ρ, t) + zρ(x, y, ρ, t) = 0, (x, y) ∈ Ω, ρ ∈ (0, 1), t > 0,

v(0, y, t) = vxx(0, y, t) = v(π, y, t) = vxx(π, y, t) = 0, y ∈ (−d, d), t > 0,

vyy(x,±d, t) + µvxx(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,+∞),

vyyy(x,±d, t) + (2 − µ)vxxy(x,±d, t) = 0, (x, t) ∈ (0, π) × (0,+∞),

z(x, y, 0, t) = vt(x, y, t), (x, y) ∈ Ω, t > 0,

v(x, y, 0) = v0(x, y), vt(x, y, 0) = v1(x, y), (x, y) ∈ Ω,

ψ(x, y, ζ, 0) = 0, (x, y) ∈ Ω, ζ ∈ R,

z(x, y, ρ, 0) = f (x, y,−ρτ), (x, y) ∈ Ω, ρ ∈ (0, 1),

(2.7)
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where κ = a1 sin(απ)
π

.
Denote by M the quantity

M =

+∞∫
−∞

φ2(ζ)
ζ2 + β

dζ,

and let δ be a positive constant satisfying

κM < δ < a0 − κM. (2.8)

Remark 2.5. From (1.2) and Lemma 2.4, we can easily check that a0 − κM > κM.

We define the space energyH by

H = W × L2(Ω) × L2(Ω × R) × L2(Ω × (0, 1)),

which is equipped with the inner product

(V, Ṽ)H = (v, ṽ)W + ⟨u, ũ⟩ + κ
∫
Ω

∫ +∞

−∞

ψ(x, y, ζ)ψ̃(x, y, ζ)dζdxdy + 2τδ
∫
Ω

∫ 1

0
z(x, y, ρ)z̃(x, y, ρ)dρdxdy,

for all V = (v, u, ψ, z)T and Ṽ = (ṽ, ũ, ψ̃, z̃)T ∈ H . Let us rewrite problem (2.7) as a first-order equation.
Let u = vt and set V = (v, u, ψ, z)T . System (2.7) can be recast asVt(t) = AV(t) + G(V(t)),

V(x, y, 0) = V0 = (v0, v1, 0, f (−ρτ)),
(2.9)

whereA : D(A) ⊂ H → H is the linear operator defined by

AV :=


u

−∆2v − a0u − κ
∫ +∞

−∞

ψ(x, y, ζ)φ(ζ)dζ

−(ζ2 + β)ψ(x, y, ζ) + z(x, y, 1)φ(ζ)
−1
τ
zρ(x, y, ρ)


and

D(A) =
{
(v, u, ψ, z) ∈ H : v ∈ H4(Ω), u ∈ W, ζψ ∈ L2(Ω × R)

−(ζ2 + β)ψ(x, y, ζ) + z(x, 1)φ(ζ) ∈ L2(Ω × R), zρ ∈ L2(Ω × (0, 1)), u = z(., 0)
}
.

The nonlinear operator G : H → H is given by

G(V) :=


0

v|v|p−2

0
0

 .
We have the following result.
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Theorem 2.6. Assume that (2.8) holds true. Therefore, we have:

(1) If V0 ∈ H , then there exists Tmax > 0 such that the system (2.9) has a unique mild solution V ∈
C([0,Tmax];H).

(2) If V0 ∈ D(A), then V is a regular solution of (2.9).

Proof. We start by proving that the operatorA is maximal dissipative. Indeed, let V ∈ D(A). Then we
infer that

(AV,V)H = −(a0 − δ)
∫
Ω

z2(x, y, 0, t)dxdy − δ
∫
Ω

z2(x, y, 1, t)dxdy

−κ

∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy

−κ

∫
Ω

z(x, y, 0, t)
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy

+κ

∫
Ω

z(x, y, 1, t)
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy. (2.10)

By combining Young’s inequality and the Cauchy-Schwarz inequality, we have

∫
Ω

z(x, y, 1, t)

+∞∫
−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy

≤ M
∫
Ω

z2(x, y, 1, t)dxdy +
1
4

∫
Ω

+∞∫
−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy, (2.11)

and

∫
Ω

z(x, y, 0, t)

+∞∫
−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy

≤ M
∫
Ω

z2(x, y, 0, t)dxdy +
1
4

∫
Ω

+∞∫
−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy. (2.12)

Inserting (2.11) and (2.12) into (2.10), it holds that

(AV,V)H ≤ −(a0 − κM − δ)
∫
Ω

z2(x, y, 0, t)dxdy − (δ − κM)
∫
Ω

z2(x, y, 1, t)dxdy

−
κ

2

∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy, (2.13)

which shows thatA is dissipative by means of (2.8). Next, it is easy to prove that the equation

−AV = F, ∀ F ∈ H , (2.14)
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where F = ( f1, f2, f3, f4), has a unique solution V ∈ D(A). In fact, (2.14) gives us:
−u = f1,

∆2v + a0u + κ
∫ +∞

−∞

ψ(x, y, ζ)φ(ζ)dζ = f2,

(ζ2 + β)ψ(x, y, ζ) − z(x, y, 1)φ(ζ) = f3,

zρ(x, y, ρ) = τ f4.

(2.15)

The first and last equations in (2.15) give us

u = − f1, z(x, y, ρ) = − f1 + τ

∫ ρ

0
f4(x, y, s)ds. (2.16)

Using (2.16) and the third equation in (2.15), we obtain

ψ(x, y, ζ) =

(
− f1 + τ

∫ 1

0
f4(x, y, s)ds

)
φ(ζ) + f3

ζ2 + β
. (2.17)

Using (2.16) and (2.17) in (2.15), integrating by parts over Ω, we find that

c(v, ϕ) = L(ϕ), ∀ ϕ ∈ W, (2.18)

where

c(v, ϕ) = (v, ϕ)W ,

and

L(ϕ) =
∫
Ω

(a0 f1 + f2)ϕdxdy + κ
∫
Ω

ϕ

∫ +∞

−∞

f1φ
2(ζ) − f3φ(ζ)
ζ2 + β

dζdxdy − κτM
∫
Ω

ϕ

∫ 1

0
f4(x, y, s)dsdxdy.

We can check that c is a continuous bilinear coercive form on W ×W and L is a continuous linear form
on W. Then, by the Lax-Milgram Theorem, problem (2.18) has a unique solution v ∈ W. Lemma 2.1
ensures that v ∈ H4(Ω). Thus, 0 ∈ ρ(A), where ρ(A) is the resolvent set of A. By the resolvent
identity, we deduce thatA is maximal (see Theorem 1.2.4 in [32]). Therefore, from the Lumer-Phillips
Theorem (see e.g., [33]),A is the infinitesimal generator of a C0−semigroup of contractions inH .

It remains to prove that G is locally Lipschitz continuous inH , that is, we need to prove that, for a
given R > 0, V = (v, u, ψ, z)T , and Ṽ = (ṽ, ũ, ψ̃, z̃)T ∈ H , there exists CR > 0 such that

∥G(V) − G(Ṽ)∥H ≤ CR∥V − Ṽ∥H , provided that ∥V∥H , ∥Ṽ∥H ≤ R. (2.19)

From the definition of G, we have

∥G(V) − G(Ṽ)∥2
H
= ∥v|v|p−2 − ṽ|ṽ|p−2∥2

≤ C∥v − ṽ∥2W
≤ C∥V − Ṽ∥2

H
,

which implies that G is locally Lipschitz in H . Hence, by Theorem 1.4 and Theorem 1.6 in [33,
Chapter 6], the Cauchy problem (2.9) has a unique mild solution on the interval [0,Tmax) for some
Tmax > 0. Furthermore, if V0 ∈ D(A), the solution is regular. □
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2.2. Global existence

Let us define

h(t) = κ
∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy + ∥v∥2W −
∫
Ω

|v|pdxdy + δτ
∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy,

and

k(t) =
κ

2

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy +
1
2
∥v∥2W −

1
p

∫
Ω

|v|pdxdy + δτ
∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy.

Define the energy of system (2.7) by

E(t) =
1
2
∥vt∥

2 + k(t),

which verifies

E′(t) ≤ −(a0 − κM − δ)∥vt∥
2 − (δ − κM)

∫
Ω

z2(x, y, 1, t)dxdy

−
κ

2

∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy. (2.20)

Hence, system (2.7) is dissipative and we have E(t) ≤ E(0).
We have the following result.

Proposition 2.7. Assume that (2.8) holds true. Then, for V0 ∈ H satisfying
χ = Ce

(
2p
p−2 E(0)

) p−2
2
< 1,

h(0) > 0,

(2.21)

we have h(t) > 0, ∀ t > 0. Moreover, the solution of (2.9) is bounded and global in time.

Proof. Using the continuity of v and the fact that h(0) > 0, we get the existence of t0 < Tmax such that
h(t) ≥ 0, ∀ t ∈ [0, t0].

From the definition of h(t) and k(t), it is easy to see that

2p
p − 2

k(t) = κ

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy

+
2

p − 2
h(t) + ∥v∥2W +

2(p − 1)δτ
p − 2

∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy

≥ ∥v∥2W .

Hence, we obtain

∥v∥2W ≤
2p

p − 2
k(t) ≤

2p
p − 2

E(t) ≤
2p

p − 2
E(0), ∀ t ∈ [0, t0].
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Now, using Lemma 2.2, it holds that

∫
Ω

|v|pdxdy ≤ Ce

(
2p

p − 2
E(0)

) p−2
2

∥v∥2W < ∥v∥2W , ∀ t ∈ [0, t0].

Therefore, one has h(t) > 0, ∀ t ∈ [0, t0]. By repeating this procedure and using the fact that

lim
t→t−0

Ce

(
2p

p − 2
E(0)

) p−2
2

< 1,

we can take t0 = Tmax. Besides, we find that

1
2
∥vt∥

2 +
p − 2
2p
∥v∥2W ≤

1
2
∥vt∥

2 + k(t) = E(t) ≤ E(0),

which means that the solution of system (2.9) is bounded and global (in time). This completes the
proof. □

3. Exponential stability

In this section, we will prove that system (2.9), with initial data satisfying (2.21), is exponentially
stable. To do this, we need the following lemmas.

Lemma 3.1. Let V = (v, u, ψ, z)T be a solution of system (2.9). The functional

ϕ1(t) =
∫
Ω

vvtdxdy +
κ

2

∫
Ω

∫ +∞

−∞

(ζ2 + β)Γ(x, y, ζ, t)dζdxdy

satisfies

ϕ′1(t) ≤
(
1 +

a2
0Ce

2

)
∥vt∥

2 −
1
2
∥v∥2W + δτ

2
∫
Ω

z2(x, y, ρ, t)dxdy +
κ

4

∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy

+∥v∥pp − κ
∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy, (3.1)

where Γ(x, y, ζ, t) =
∫ t

0
ψ(x, y, ζ, s)ds −

τφ(ζ)
ζ2 + β

∫ 1

0
f (x, y,−ρτ)dρ +

v0(x, y)φ(ζ)
ζ2 + β

.

Proof. By differentiating ϕ1 and using (2.7)1, we infer that

ϕ′1(t) = ∥vt∥
2 − ∥v∥2W − a0

∫
Ω

vvtdxdy − κ
∫
Ω

v(x, y, t)
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy

+∥v∥pp + κ
∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ(x, y, ζ, t)Γ(x, y, ζ, t)dζdxdy. (3.2)
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According to Lemma 6 in [28], we have∫
Ω

∫ +∞

−∞

(
ζ2 + β

)
ψ(x, y, ζ, t)Γ(x, y, ζ, t)dζdxdy

=

∫
Ω

v(x, y, t)
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy − τ
∫
Ω

∫ 1

0
z(x, y, ρ, t)

∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdρdxdy

−

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy. (3.3)

Inserting (3.3) in (3.2), one finds that

ϕ′1(t) = ∥vt∥
2 − ∥v∥2W − a0

∫
Ω

vvtdxdy − κτ
∫
Ω

∫ 1

0
z(x, y, ρ, t)

∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdρdxdy

+∥v∥pp − κ
∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy. (3.4)

Similarly to (2.11) and (2.12), we have∫
Ω

z(x, y, ρ, t)

+∞∫
−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy

≤ M
∫
Ω

z2(x, y, ρ, t)dxdy +
1
4

∫
Ω

+∞∫
−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy. (3.5)

Using Young’s inequality and Lemma 2.2, it is easy to see that

−a0

∫
Ω

vvtdxdy ≤ a0η∥vt∥
2 +

a0Ce

4η
∥v∥2W , (3.6)

for any η > 0.
Inserting (3.5) and (3.6) into (3.4) and choosing η = a0Ce

2 , we get the desired inequality (3.1). □

Lemma 3.2. Let V = (v, u, ψ, z)T be a solution of system (2.9). The functional

ϕ2(t) = τ
∫
Ω

∫ 1

0
e−τρz2(x, y, ρ, t)dρdxdy,

satisfies

ϕ′2(t) ≤ ∥vt∥
2 − τe−τ

∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy. (3.7)

Proof. By differentiating ϕ2 and using (2.7)3 and the fact that z(x, y, 0, t) = vt, we get

ϕ′2(t) = 2τ
∫
Ω

∫ 1

0
e−τρz(x, y, ρ, t)zt(x, y, ρ, t)dρdxdy

= −2
∫
Ω

∫ 1

0
e−τρz(x, y, ρ, t)zρ(x, y, ρ, t)dρdxdy
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= −

∫
Ω

∫ 1

0

d
dρ

[e−τρz2(x, y, ρ, t)]dρdxdy − τ
∫
Ω

∫ 1

0
e−τρz2(x, y, ρ, t)dρdxdy

= −τ

∫
Ω

∫ 1

0
e−τρz2(x, y, ρ, t)dρdxdy − e−τ

∫
Ω

z2(x, y, 1, t)dρdxdy + ∥vt∥
2

≤ −τe−τ
∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy + ∥vt∥

2.

□

The main result of this section reads as follows.

Theorem 3.3. Suppose (2.8) and (2.21). Then, there exist positive constants a and b such that any
solution of (2.9) verifies

E(t) ≤ aE(0)e−bt, t ≥ 0. (3.8)

Proof. Define the functional
E(t) = NE(t) + N1ϕ1(t) + ϕ2(t),

where N and N1 are positive constants that will be chosen later. It is not difficult to prove, for N large
enough, that

s1E(t) ≤ E(t) ≤ s2E(t), (3.9)

for some positive constants s1 and s2.
Using (2.20), (3.1), and (3.7), we find

E′(t) ≤ −
(
N(a0 − κM − δ) − N1(1 +

a2
0Ce

2
) − 1

)
∥vt∥

2 −
N1

2
∥v∥2W − κN1

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy

−
κ

2

(
N −

N1

2

) ∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy + N1∥v∥pp

−τ
(
e−τ − N1δτ

) ∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy. (3.10)

At this point, we choose N1 small enough so that

e−τ − N1δτ > 0.

Next, we choose N large enough so that

N > max
{N1(1 + a2

0Ce

2 ) + 1
a0 − κM − δ

,
N1

2

}
.

Consequently, we obtain the existence of a positive constant s3 such that

E′(t) ≤ −s3E(t).

Using (3.9), we find
E′(t) ≤ −

s3

s2
E(t).
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Hence,
E(t) ≤ E(0)e−

s3
s2

t
.

Again using (3.9), one has

E(t) ≤
E(t)
s1
≤

1
s1
E(0)e−

s3
s2

t
≤

s2

s1
E(0)e−

s3
s2

t
.

Consequently, (3.8) holds true with a = s2
s1

and b = s3
s2
. □

Remark 3.4. Asymptotic analysis helps engineers understand how the dynamic responses of a
suspension bridge evolve over time. Furthermore, asymptotic results can identify the natural
frequencies of the bridge and how they change with varying load conditions. This information is
crucial for avoiding resonance, which can lead to catastrophic failures, as seen in historical bridge
collapses. By understanding the asymptotic behavior, engineers can design bridges to avoid critical
frequencies that match environmental or traffic-induced vibrations.

4. Blow-up

In this section, we will prove that the solution of (2.7) blows up in finite time when the initial energy
E(0) is negative.

Define the functions

R(t) = −E(t)

= −
1
2
∥vt∥

2 −
1
2
∥v∥2W −

κ

2

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy

+
1
p

∫
Ω

|v|pdxdy − δτ
∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy,

and
L(t) = R1−ν(t) + ε

∫
Ω

vvtdxdy +
a0ε

2
∥v∥2,

where 0 < ν < p−2
2p and ε will be chosen later.

Proposition 4.1. Suppose that (2.8) and E(0) < 0 hold true. Then, there exists a positive constant M1

such that

L′(t) ≥ M1

[
R(t) + ∥vt∥

2 + ∥v∥2W + ∥v∥
p
p + κ

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy

+δτ

∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy

]
. (4.1)

Proof. First, we can easily see that

∥v∥qp ≤ C1

(
∥v∥2W + ∥v∥

p
p

)
, ∀ v ∈ W, 2 ≤ q ≤ p, (4.2)

for some positive constant C1. Indeed, if ∥v∥p ≤ 1, it follows from (2.3) that

∥v∥qp ≤ ∥v∥
2
p ≤ C

2
p
e ∥v∥2W , 2 ≤ q ≤ p.

AIMS Mathematics Volume 9, Issue 8, 22022–22040.



22035

Now, if ∥v∥p > 1, then one has

∥v∥qp ≤ ∥v∥
p
p, 2 ≤ q ≤ p.

Combining these last two inequalities, we get (4.2). Now, from (2.20), we have

R′(t) = −E′(t) ≥
κ

2

∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy ≥ 0, (4.3)

which implies that

0 < R(0) ≤ R(t) ≤
1
p
∥v∥pp. (4.4)

Differentiating L(t) and using (2.7)1, we get

L′(t) = (1 − ν)R′(t)R−ν(t) + ε∥vt∥
2 − ε∥v∥2W − εκ

∫
Ω

v
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy + ε∥v∥pp. (4.5)

The penultimate term (on the righthand side of (4.5)) can be estimated as

−

∫
Ω

v
∫ +∞

−∞

ψ(x, y, ζ, t)φ(ζ)dζdxdy ≥ −θM∥v∥2 −
1
4θ

∫
Ω

∫ +∞

−∞

(ζ2 + β)ψ2(x, y, ζ, t)dζdxdy,

for any θ > 0.
In the last inequality, choose θ = 1

2λR−ν(t) , for some λ to be specified later, and combine the resulting
inequality with (4.3), (4.5), and the fact that −κM > −δ yields to

L′(t) ≥ (1 − ν − ελ)R′(t)R−ν(t) + ε∥vt∥
2 − ε∥v∥2W −

δε

2λ
Rν(t)∥v∥2 + ε∥v∥pp. (4.6)

Therefore, by using (4.1), we obtain for some 0 < m < 1

L′(t) ≥ (1 − ν − ελ)R′(t)R−ν(t) + ε
p(1 − m) + 2

2
∥vt∥

2 + ε
p(1 − m) − 2

2
∥v∥2W −

δε

2λ
Rν(t)∥v∥2 + εm∥v∥pp

+p(1 − m)εR(t) + ε
p(1 − m)κ

2

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy

+εp(1 − m)δτ
∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy. (4.7)

Using (4.2), (4.4), and the fact that ∥v∥ ≤ C2∥v∥p, we deduce that

Rν(t)∥v∥2 ≤
(

1
p

)ν
∥v∥pνp ∥v∥

2 ≤ C2∥v∥pν+2
p ≤ C3

(
∥v∥2W + ∥v∥

p
p

)
,

where C2 and C3 are positive constants. Note that in the last inequality we have used the fact that
2 < pν + 2 ≤ p. Hence, (4.7) becomes

L′(t) ≥ (1 − ν − ελ)R′(t)R−ν(t) + ε
p(1 − m) + 2

2
∥vt∥

2 + ε

(
p(1 − m) − 2

2
−

C3δ

2λ

)
∥v∥2W
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+ε
(
m −

C3δ

2λ

)
∥v∥pp + p(1 − m)εR(t) + ε

p(1 − m)κ
2

∫
Ω

∫ +∞

−∞

ψ2(x, y, ζ, t)dζdxdy

+εp(1 − m)δτ
∫
Ω

∫ 1

0
z2(x, y, ρ, t)dρdxdy. (4.8)

Now, we choose our parameters carefully. First, we select m small enough such that

p(1 − m) − 2 > 0.

Second we choose λ large enough so that

p(1 − m) − 2
2

−
C3δ

2λ
> 0 and m −

C3δ

2λ
.

Now, we choose ε small enough such that

1 − ν − ελ > 0 and R1−ν(0) −
ε

2a0
∥v1∥

2 > 0.

With these choices, (4.1) holds true. This ends the proof. □

Remark 4.2. By the above choice of ε and (4.1), it is clear that L(t) ≥ L(0) > 0, ∀ t ≥ 0.

Theorem 4.3. Under the conditions of Proposition 4.1, the solution of (2.7) blows up in finite time.

Proof. By the definition of L(t), we infer that

L
1

1−ν (t) =
(
R1−ν(t) + ε

∫
Ω

vvtdxdy +
a0ε

2
∥v∥2

) 1
1−ν

≤ C4

(
R(t) +

∣∣∣∣ ∫
Ω

vvtdxdy
∣∣∣∣ 1

1−ν
+ ∥v∥

2
1−ν

)
, (4.9)

for some constant C4 > 0.
Since 2 < 2

1−2ν < p, then using Hölder and Young’s inequalities and (4.2), we infer that∣∣∣∣ ∫
Ω

vvtdxdy
∣∣∣∣ 1

1−ν
≤ ∥v∥

1
1−ν ∥vt∥

1
1−ν

≤ C
1

1−ν
2 ∥v∥

1
1−ν
p ∥vt∥

1
1−ν

≤ C5

(
∥v∥

2
1−2ν
p + ∥vt∥

2
)

≤ C6

(
∥v∥2W + ∥v∥

p
p + ∥vt∥

2
)
, (4.10)

where C5,C6 > 0.
Since 2 < 2

1−ν < p, then by (4.2), we get

∥v∥
2

1−ν ≤ C
2

1−ν
2 ∥v∥

2
1−ν
p ≤ C

2
1−ν
2 C1

(
∥v∥2W + ∥v∥

p
p

)
. (4.11)

Inserting (4.10) and (4.11) into (4.9), we obtain the existence of a positive constant C7 such that

L
1

1−ν (t) ≤ C7

(
R(t) + ∥v∥2W + ∥v∥

p
p + ∥vt∥

2
)
, ∀ t ≥ 0.
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The last inequality combined with (4.1) gives us

L′(t) ≥ C8L
1

1−ν (t), ∀ t ≥ 0, (4.12)

where C8 > 0. Integrating (4.12) over (0, t), we arrive at

L(t) ≥

 1
L
−ν
1−ν (0) − C8ν

1−ν t


1−ν
ν

,

and, consequently, we deduce that L(t) blows up in a finite time

T ≤ T0 =
1 − ν

C8νL
ν

1−ν (0)
.

This ends the proof. □

Remark 4.4. Finite time blow-up is the occurrence when solutions become unbounded within a finite
amount of time. While not desirable in practical applications due to the potential for structural failure,
studying the factors that cause blow-up can provide useful insights into the limits of safe functioning.
Engineers can apply this knowledge to develop damping systems that efficiently prevent or mitigate
such catastrophic events.

5. Conclusions

This paper examines suspension bridges subjected to both frictional and fractional damping, along
with an external force source. First, we proved the existence of weak solutions and regular ones by
using the semigroup method. Second, by constructing a suitable Lyapunov functional, we proved the
exponential decay of energy for small initial data. Finally, we also showed that if the initial energy
is negative, then the solution of our model blows-up in a finite time. Regarding future works, we can
consider other types of damping, for example structural damping (of the form −∆vt), strong damping

(of the form ∆2vt), or a viscoelastic term (of the form −
∫ t

0
g(t − s)∆2v(s)ds where g is the relaxation

function), combined with a fractional time delay term and study the asymptotic behavior of these new
models.
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