Research article Special Issues

Expressions of the Laguerre polynomial and some other special functions in terms of the generalized Meijer $ G $-functions

  • Received: 09 June 2021 Accepted: 05 August 2021 Published: 11 August 2021
  • MSC : 33C60, 33C10, 45P05

  • In this paper, we investigate the relation of generalized Meijer $ G $-functions with some other special functions. We prove the generalized form of Laguerre polynomials, product of Laguerre polynomials with exponential functions, logarithmic functions in terms of generalized Meijer $ G $-functions. The generalized confluent hypergeometric functions and generalized tricomi confluent hypergeometric functions are also expressed in terms of the generalized Meijer $ G $-functions.

    Citation: Syed Ali Haider Shah, Shahid Mubeen. Expressions of the Laguerre polynomial and some other special functions in terms of the generalized Meijer $ G $-functions[J]. AIMS Mathematics, 2021, 6(11): 11631-11641. doi: 10.3934/math.2021676

    Related Papers:

  • In this paper, we investigate the relation of generalized Meijer $ G $-functions with some other special functions. We prove the generalized form of Laguerre polynomials, product of Laguerre polynomials with exponential functions, logarithmic functions in terms of generalized Meijer $ G $-functions. The generalized confluent hypergeometric functions and generalized tricomi confluent hypergeometric functions are also expressed in terms of the generalized Meijer $ G $-functions.



    加载中


    [1] E. D. Rainville, Special functions, New Yark: The Macmillan Company, 1960.
    [2] J. D. Konhauser, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacif. J. Math., 21 (1967), 303–314. doi: 10.2140/pjm.1967.21.303
    [3] C. Hwang, Y. P. Shih, Parameter identification via Laguerre polynomials, Int. J. Syst. Sci., 13 (1982), 209–217. doi: 10.1080/00207728208926341
    [4] R. Aktas, E. Erkus-Duman, The Laguerre polynomials in several variables, Math. Slovca, 63 (2013), 531–544. doi: 10.2478/s12175-013-0116-3
    [5] S. Y. Tan, T. R. Huang, Y. M. Chu, Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind, Math. Slovaca, 71 (2021), 667–682. doi: 10.1515/ms-2021-0012
    [6] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York: Dover, Government Printing Office, 1965.
    [7] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347 (1995), 1713–1723. doi: 10.1090/S0002-9947-1995-1264800-3
    [8] G. Anderson, M. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacif. J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1
    [9] M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mt. J. Math., 46 (2016), 679–691.
    [10] S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306–1337. doi: 10.1016/j.jmaa.2019.02.018
    [11] V. Kiryakova, Generalized fractional calculus and applications, UK: Longman, Harlow, 1994.
    [12] L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan, 1985.
    [13] Y. L. Luke, The special functions and their approximations, New York: Academic Press, 1969.
    [14] A. Klimyik, Meijer $G$-function, Berlin: Springer, 2001.
    [15] R. A. Askey, Meijer $G$-function, In: D. Adri, B. Olde, NIST handbook of mathematical functions, Cambridge: Cambridge University Press, 2010.
    [16] A. M. Mathai, R. K. Saxena, H. J. Haubold, The $H$-function theory and applications, New York, Dordrecht Heidelberg London: Springer, 2009.
    [17] R. Beals, J. Szmigielski, Meijer $G$-function: A gentle introduction, Notices AMS, 60 (2013), 866–872. doi: 10.1090/noti1016
    [18] S. Pincherly, Sullefunzioni ipergeometriche generalizzante, Atti R. Accademia Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 4 (1888), 694–700.
    [19] H. J. Mellin, Abripeiner einhaitlichen Theorie der Gamma und der Hypergeometrischen Funktionen, Math. Ann., 68 (1910), 305–307. doi: 10.1007/BF01475775
    [20] V. Adamchik, The evaluation of integrals of Bessel functions via $G$-function identities, J. Comput. Appl. Math., 64 (1995), 283–290. doi: 10.1016/0377-0427(95)00153-0
    [21] V. C. Adamchik, O. I. Merichev, The algorithm for calculating integrals of hypergeometric type functions and its realization in reduces system, In: Proceedings of the international symposium on Symbolic and algebraic computation (ISSAC'90), Association for Computing Machinery, New York, NY, USA, 1990,212–224.
    [22] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.
    [23] C. S. Meijer, Expension theorems for the $G$-function. V, Proc. Kon. Ned. Akad. v. Wetensch., Ser. A, 60 (1953), 349–397.
    [24] N. E. Norlund, Hypergeometric functions, Act. Math., 94 (1955), 289–349.
    [25] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series, Volume 3: More special functions, New York: Gordon and Breach, 1990.
    [26] M. S. Milgram, On some sums of Meijer's $G$-functions, AECL-5827, 1977.
    [27] E. R. Hansen, A table of series and products, Prentice-Hall, 1975,425–437.
    [28] C. G. Kokologiannaki, Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653–660.
    [29] C. G. Kokologiannaki, V. Krasniqi, Some properties of $k$-gamma function, Le Math., 1 (2013), 13–22,
    [30] V. Krasniqi, A limit for the $k$-gamma and $k$-beta function, Int. Math. Forum, 5 (2010), 1613–1617.
    [31] M. Mansoor, Determining the $k$-generalized gamma function $\Gamma_{k}(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4 (2009), 1037–1042.
    [32] S. Mubeen, G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. Math. Forum, 7 (2012), 203–207.
    [33] S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and applications, Int. J. Math. Sci., 7 (2012), 89–94.
    [34] S. Mubeen, A. Rehman, F. Shaheen, Properties of $k$-gamma, $k$-beta and $k$-psi functions, Both. J., 4 (2014), 371–379.
    [35] S. Mubeen, Solution of some integral equations involving confluent $k$-hypergeometric functions, J. Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003
    [36] F. Merovci, Power product inequalities for the $\Gamma_{k}$ function, Int. J. Math. Anal., 4 (2010), 1007–1012.
    [37] S. Mubeen, A. Rehman, F. Shaheen, Some nequalities involving $k$-gamma and $k$-beta functions with applications, J. Inequal. Appl., 2014 (2014), 224. doi: 10.1186/1029-242X-2014-224
    [38] S. Mubeen, M. Naz, A. Rehman, G. Rehman, Solutions of $k$-hypergeometric differentail equations, J. Appl. Math., 2014 (2014), 1–3.
    [39] R. Diaz, C. Teruel, $q, k$-generalized gamma and beta function, J. Nonlinear Math. Phys., 12 (2005), 118–134. doi: 10.2991/jnmp.2005.12.1.10
    [40] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2420) PDF downloads(214) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog