In this paper Hadamard type inequalities for strongly $ (\alpha, m) $-convex functions via generalized Riemann-Liouville fractional integrals are studied. These inequalities provide generalizations as well as refinements of several well known inequalities. The established results are further connected with fractional integral inequalities for Riemann-Liouville fractional integrals of convex, strongly convex and strongly $ m $-convex functions. By using two fractional integral identities some more Hadamard type inequalities are proved.
Citation: Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung. Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions[J]. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
In this paper Hadamard type inequalities for strongly $ (\alpha, m) $-convex functions via generalized Riemann-Liouville fractional integrals are studied. These inequalities provide generalizations as well as refinements of several well known inequalities. The established results are further connected with fractional integral inequalities for Riemann-Liouville fractional integrals of convex, strongly convex and strongly $ m $-convex functions. By using two fractional integral identities some more Hadamard type inequalities are proved.
[1] | G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14 (2017), 64–68. |
[2] | I. İşcan, M. Kunt, N.Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals, New Trends Math. Sci., 4 (2016), 239–253. |
[3] | S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $k$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. doi: 10.3934/math.2020171 |
[4] | Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266 |
[5] | A. Ekinci, M. E. Özdemir, Some new integral inequalities via Riemann-Liouville integral operators, Appl. Comput. Math., 3 (2019), 288–295. |
[6] | E. Set, A. O. Akdemir, F. Ozata, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (2020), 402–414. |
[7] | Y. L. Dong, M. Saddiqa, S. Ullah, G. Farid, Study of fractional integral operators containing Mittag-Leffler functions via strongly $(\alpha, m)$-convex functions, Math. Probl. Eng., 2021 (2021), 6693914. |
[8] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048 |
[9] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197 |
[10] | S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[11] | S. Mubeen, A. Rehman, A note on $k$-Gamma function and Pochhammer $k$-symbol, J. Math. Sci., 6 (2014), 93–107. |
[12] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478. |
[13] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for $k$-fractional integrals, Konuralp J. Maths., 4 (2016), 79–86. |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studueds, Elsevier, 2006. |
[15] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons, Inc., 1993. |
[16] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, USA: Gordon and Breach Science Publishers, 1993. |
[17] | G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Probl. Eng., 2021 (2021), 6667226. |
[18] | M. U. Awan, M. A. Noor, T. S. Du, K. I. Noor, New refinements of fractional Hermite-Hadamard inequality, RACSAM, 113 (2019), 21–29. doi: 10.1007/s13398-017-0448-x |
[19] | M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving $\psi_{k}$-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. |
[20] | K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. doi: 10.1186/s13660-019-1982-1 |
[21] | Y. C. Kwun, G. Farid, S. B. Akbar, S. M. Kang, Riemann-Liouville Fractional versions of Hadamard inequality for strongly $m$-convex functions, unpublished work. |
[22] | N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193–199. doi: 10.1007/s00010-010-0043-0 |
[23] | G. Farid, A. U. Rehman, B. Tariq, A. Waheed, On Hadamard type inequalities for $m$-convex functions via fractional integrals, J. Inequal. Spec. Funct., 7 (2016), 150–167. |
[24] | Y. C. Kwun. G. Farid, S. B. Akbar, S. M. Kang, Riemann-Liouville fractional versions of Hadamard inequality for strongly $(\alpha, m)$-convex functions, unpublished work. |
[25] | P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Methods Appl. Sci., 44 (2021), 2314–2324. doi: 10.1002/mma.5784 |
[26] | C. Miao, G. Farid, H. Yasmeen, Y. Bian, Generalized Hadamard fractional integral inequalities for strongly $(s, m)$-convex functions, J. Math., 2021 (2021), 6642289. |
[27] | G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for $m$-convex functions via Riemann-Liouville fractional integrals, Studia Univ. Babes-Bolyai, Math., 62 (2017), 141–150. doi: 10.24193/subbmath.2017.2.01 |
[28] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. |
[29] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. |