We discuss the solution to the minimum functional equation
$ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $
for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation
$ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $
where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations
$ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $
and
$ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $
with the restriction that the function $ \eta $ satisfies the Kannappan condition.
Citation: Muhammad Sarfraz, Yongjin Li. Minimum functional equation and some Pexider-type functional equation on any group[J]. AIMS Mathematics, 2021, 6(10): 11305-11317. doi: 10.3934/math.2021656
We discuss the solution to the minimum functional equation
$ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $
for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation
$ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $
where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations
$ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $
and
$ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $
with the restriction that the function $ \eta $ satisfies the Kannappan condition.
[1] | A. Chaljub-Simon, P. Volkmann, Caractrisation du module d’une fonction additive l’aide d’une quation fonctionnelle, Aequationes Math., 47 (1994), 60-68. doi: 10.1007/BF01838140 |
[2] | W. Jarczyk, P. Volkmann, On functional equations in connection with the absolute value of additive functions, Series Math. Catovic. Debrecen., 32 (2010), 11. |
[3] | I. Toborg, On the functional equation $f(x) + f(y) = \max\{f(xy), f(xy^{-1})\}$ on groups, Archiv der Mathematik, 109 (2017), 215-221. doi: 10.1007/s00013-017-1061-0 |
[4] | P. Volkmann, Charakterisierung des Betrages reellwertiger additiver Funktionen auf Gruppen, KITopen, (2017), 4. |
[5] | P. Kannappan, The functional equation $f(xy)+ f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Am. Math. Soc., 19 (1968), 69-74. |
[6] | M. Sarfraz, Q. Liu, Y. Li, Stability of Maximum Functional Equation and Some Properties of Groups, Symmetry, 12 (2020), 1949. doi: 10.3390/sym12121949 |
[7] | B. Przebieracz, The stability of functional equation $\min\{f(x+y), f(x-y)\} = |f(x)-f(y)|$, J. Inequalities Appl., 1 (2011), 1-6. |
[8] | M. Sarfraz, Q. Liu, Y. Li, The Functional Equation $\max {\chi(xy), \chi(xy^{-1})} = \chi(x)\chi(y)$ on Groups and Related Results, Mathematics, 9 (2021), 382. doi: 10.3390/math9040382 |
[9] | R. M. Redheffer, P. Volkmann, Die Funktionalgleichung $f(x)+\max \{f(y), f(-y)\} = \max \{f(x+y), f(x-y)\}$, International Series of Numerical Mathematics 123; Birkhauser: Basel, Switzerland, 1997,311-318. |
[10] | B. Ebanks, General solution of a simple Levi-Civita functional equation on non-abelian groups, Aequat. Math., 85 (2013), 359-378. doi: 10.1007/s00010-012-0136-z |
[11] | B. Przebieracz, On some Pexider-type functional equations connected with the absolute value of additive functions, Part II, Bull. Aust. Math. Soc., 85 (2012), 202-216. doi: 10.1017/S0004972711002693 |
[12] | J. Stepr$\bar{a}$ns, A characterization of free abelian groups, Proc. Am. Math. Soc., 93 (1985), 347-349. doi: 10.1090/S0002-9939-1985-0770551-0 |