Research article

Minimum functional equation and some Pexider-type functional equation on any group

  • Received: 27 April 2021 Accepted: 29 July 2021 Published: 05 August 2021
  • MSC : 20D60, 54E35, 11T71

  • We discuss the solution to the minimum functional equation

    $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $

    for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation

    $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $

    where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations

    $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $

    and

    $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $

    with the restriction that the function $ \eta $ satisfies the Kannappan condition.

    Citation: Muhammad Sarfraz, Yongjin Li. Minimum functional equation and some Pexider-type functional equation on any group[J]. AIMS Mathematics, 2021, 6(10): 11305-11317. doi: 10.3934/math.2021656

    Related Papers:

  • We discuss the solution to the minimum functional equation

    $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $

    for a real-valued function $ \eta: G \to \mathbb{R} $ defined on arbitrary group $ G $. In addition, we examine the Pexider-type functional equation

    $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \chi(x)\eta(y)+\psi(x), \qquad x, y \in G, \end{align} $

    where $ \eta $, $ \chi $ and $ \psi $ are real mappings acting on arbitrary group $ G $. We also investigate this Pexiderized functional equation that generalizes two functional equations

    $ \begin{align} \max \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $

    and

    $ \begin{align} \min \{\, \eta(xy^{-1}), \eta(xy) \, \} = \eta(x)\eta(y), \qquad x, y \in G, \end{align} $

    with the restriction that the function $ \eta $ satisfies the Kannappan condition.



    加载中


    [1] A. Chaljub-Simon, P. Volkmann, Caractrisation du module d’une fonction additive l’aide d’une quation fonctionnelle, Aequationes Math., 47 (1994), 60-68. doi: 10.1007/BF01838140
    [2] W. Jarczyk, P. Volkmann, On functional equations in connection with the absolute value of additive functions, Series Math. Catovic. Debrecen., 32 (2010), 11.
    [3] I. Toborg, On the functional equation $f(x) + f(y) = \max\{f(xy), f(xy^{-1})\}$ on groups, Archiv der Mathematik, 109 (2017), 215-221. doi: 10.1007/s00013-017-1061-0
    [4] P. Volkmann, Charakterisierung des Betrages reellwertiger additiver Funktionen auf Gruppen, KITopen, (2017), 4.
    [5] P. Kannappan, The functional equation $f(xy)+ f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Am. Math. Soc., 19 (1968), 69-74.
    [6] M. Sarfraz, Q. Liu, Y. Li, Stability of Maximum Functional Equation and Some Properties of Groups, Symmetry, 12 (2020), 1949. doi: 10.3390/sym12121949
    [7] B. Przebieracz, The stability of functional equation $\min\{f(x+y), f(x-y)\} = |f(x)-f(y)|$, J. Inequalities Appl., 1 (2011), 1-6.
    [8] M. Sarfraz, Q. Liu, Y. Li, The Functional Equation $\max {\chi(xy), \chi(xy^{-1})} = \chi(x)\chi(y)$ on Groups and Related Results, Mathematics, 9 (2021), 382. doi: 10.3390/math9040382
    [9] R. M. Redheffer, P. Volkmann, Die Funktionalgleichung $f(x)+\max \{f(y), f(-y)\} = \max \{f(x+y), f(x-y)\}$, International Series of Numerical Mathematics 123; Birkhauser: Basel, Switzerland, 1997,311-318.
    [10] B. Ebanks, General solution of a simple Levi-Civita functional equation on non-abelian groups, Aequat. Math., 85 (2013), 359-378. doi: 10.1007/s00010-012-0136-z
    [11] B. Przebieracz, On some Pexider-type functional equations connected with the absolute value of additive functions, Part II, Bull. Aust. Math. Soc., 85 (2012), 202-216. doi: 10.1017/S0004972711002693
    [12] J. Stepr$\bar{a}$ns, A characterization of free abelian groups, Proc. Am. Math. Soc., 93 (1985), 347-349. doi: 10.1090/S0002-9939-1985-0770551-0
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1985) PDF downloads(59) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog