The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of time fractional model analysis in which initial conditions are involved.
Citation: Jocelyn SABATIER, Christophe FARGES. Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used[J]. AIMS Mathematics, 2021, 6(10): 11318-11329. doi: 10.3934/math.2021657
The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of time fractional model analysis in which initial conditions are involved.
[1] | C. F. Lorenzo, T. T. Hartley, Initialized fractional calculus, Int. J. Appl. Math. 3 (2000), 249-265. |
[2] | C. F. Lorenzo, T. T. Hartley, Initialization in fractional order systems, In: Proceedings of the European Conference On Control ECC, Porto, Portugal, 4-7 September 2001, 1471-1476. |
[3] | M. D. Ortigueira, On the initial conditions in continuous-time fractional linear systems, Signal Process, 83 (2003), 2301-2309. doi: 10.1016/S0165-1684(03)00183-X |
[4] | M. Fukunaga, N. Shimizu, Role of prehistories in the initial value problems of fractional viscoelastic equations, Non. Dyn. 38 (2004), 207-220. |
[5] | J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, On a Representation of Fractional Order Systems: Interests for the Initial Condition Problem, In: Proceedings of the 3rd ed IFAC FDA Workshop, Ankara, Turkey, 2008. |
[6] | J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1318-1326. |
[7] | M. D. Ortigueira, F. Coito, System initial conditions vs derivative initial conditions. Comput. Math. Appl., 59 (2010), 1782-1789. |
[8] | J. Sabatier, C. Farges, Comments on the description and initialization of fractional partial differential equations using Riemann-liouville's and caputo's definitions, J. Comput. Appl. Math., 339 (2018), 30-39. doi: 10.1016/j.cam.2018.02.030 |
[9] | A. M. Balint, S. Balint, Mathematical description of the groundwater flow and that of the impurity spread, which use temporal caputo or Riemann-liouville fractional partial derivatives, is non-objective, Fractal Fract., 4 (2020), 36. |
[10] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, 1993. |
[11] | C. Li, D. Qian, Y. Chen, On Riemann-Liouville and Caputo Derivatives, Discrete Dyn. Nat. Soc., 2021 (2011), 1-15. |
[12] | M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, New York Dover Publications, 1964. |
[13] | Z. Bai, S. Zhang, S. Sun, C. Yin, Monotone iterative method for fractional differential equations, Electron. J. Diff. Eq., 2016 (2016), 1-8. doi: 10.1186/s13662-015-0739-5 |
[14] | K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194 |
[15] | H. Chena, F. Holland, M. Stynes, An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions, Appl. Numer. Math., 139 (2019), 52-61. doi: 10.1016/j.apnum.2019.01.004 |
[16] | R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6 (2018), 16-39. doi: 10.3390/math6020016 |
[17] | E. C. De Oliveira, J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 1-6. |
[18] | J. Sabatier, C. Farges, V. Tartaglione, Some alternative solutions to fractional models for modelling long memory behaviors, Mathematics, 8 (2020), 196-212. doi: 10.3390/math8020196 |
[19] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[20] | J. Sabatier, Non-singular kernels for modelling power law type long memory behaviours and beyond, Cybern. Syst., 51 (2020), 383-401. doi: 10.1080/01969722.2020.1758470 |
[21] | M. Stynes, Fractional-order derivatives defined by continuous kernels are too restrictive, Appl. Math. Lett., 85 (2018), 22-26. doi: 10.1016/j.aml.2018.05.013 |
[22] | J. Sabatier, Fractional-order derivatives defined by continuous kernels: Are they really too restrictive? Fractal Fract., 4 (2020), 40-45. |
[23] | J. Sabatier, Power law type long memory behaviors modeled with distributed time delay systems, Fractal Fract., 4 (2019), 1-12. doi: 10.3390/fractalfract4010001 |
[24] | V. Tartaglione, C. Farges, J. Sabatier, Nonlinear dynamical modeling of adsorption and desorption processes with power-law kinetics: Application to CO2 capture, Phys. Rev. E, 102 (2020), 052102. doi: 10.1103/PhysRevE.102.052102 |
[25] | J. Sabatier, Beyond the particular case of circuits with geometrically distributed components for approximation of fractional order models: Application to a new class of model for power law type long memory behaviour modelling, J. Adv. Res., 25 (2020), 243-255. doi: 10.1016/j.jare.2020.04.004 |
[26] | D. Hinrichsen, A. Pritchard, Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness, Texts in Applied Mathematics 48, (2005), Springer. |
[27] | J. Sabatier, C. Farges, J. C. Trigeassou, Fractional systems state space description: Some wrong ideas and proposed solutions, J. Vib. Control, 20 (2014), 1076-1084. doi: 10.1177/1077546313481839 |
[28] | J. Sabatier, Fractional order models are doubly infinite dimensional models and thus of infinite memory: Consequences on initialization and some solutions, Symmetry, 13 (2021), 1099-1112. doi: 10.3390/sym13061099 |
[29] | S. Patnaik, F. Semperlotti, A generalized fractional-order elastodynamic theory for non-local attenuating media, P. Roy. Soc. A, 476 (2020), 200-214. |
[30] | G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non-local continuum, Physica E, 42 (2009), 95-103. doi: 10.1016/j.physe.2009.09.006 |
[31] | S. Patnaik, S. Sidhardh, F. Semperlotti, Towards a unified approach to nonlocal elasticity via fractional-order mechanics, Int. J.Mech. Sci., 189 (2021), 105992. doi: 10.1016/j.ijmecsci.2020.105992 |
[32] | T. Jin, S. Gao, H. Xia, H. Ding, Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type, J. Adv. Res., 4 (2021), 8-20. |
[33] | T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simul., 190 (2021), 203-221. doi: 10.1016/j.matcom.2021.05.018 |
[34] | K. Hosseini, M. Ilie, M. Mirzazadeh, A. Yusuf, T. A. Sulaiman, D. Baleanu, et al. An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simul., 187 (2021), 248-260. doi: 10.1016/j.matcom.2021.02.021 |
[35] | M. Higazy, Y. S. Hamed, Dynamics, circuit implementation and control of new caputo fractional order chaotic 5-dimensions hyperjerk model, Alex. Eng. J., 60 (2021), 4177-4190. |
[36] | M. Farman, M. Aslam, A. Akgül, A. Ahmad, Modeling of fractional-order COVID-19 epidemic model with quarantine and social distancing, Math. Methods Appl. Sci., 44 (2021), 9334-9350. doi: 10.1002/mma.7360 |