Research article

Predefined-time vector-polynomial-based synchronization among a group of chaotic systems and its application in secure information transmission

  • Received: 10 May 2021 Accepted: 18 July 2021 Published: 30 July 2021
  • MSC : 93C10

  • This article aims to improve the security and timeliness of chaotic synchronization scheme in chaotic secure information transmission. Firstly, a novel nonlinear synchronization scheme among multiple chaotic systems is defined based on vector polynomial to improve the complexity of the carrier signal, and then to enhance the attack resistance of the communication scheme. Secondly, a more flexible and accurate synchronization control technology is proposed so that the above vector-polynomial-based chaotic synchronization can be realized within a time that is predefined as a tunable control parameter. Subsequently, the theoretical derivation is carried out to prove the synchronization time in the above-mentioned synchronization control scheme can be set independently without being affected by the initial conditions or other control parameters. Finally, several simulation experiments on secure information transmission are presented to verify the efficiency and superiority of the designed chaotic synchronization scheme and synchronization control technology.

    Citation: Qiaoping Li, Sanyang Liu. Predefined-time vector-polynomial-based synchronization among a group of chaotic systems and its application in secure information transmission[J]. AIMS Mathematics, 2021, 6(10): 11005-11028. doi: 10.3934/math.2021639

    Related Papers:

  • This article aims to improve the security and timeliness of chaotic synchronization scheme in chaotic secure information transmission. Firstly, a novel nonlinear synchronization scheme among multiple chaotic systems is defined based on vector polynomial to improve the complexity of the carrier signal, and then to enhance the attack resistance of the communication scheme. Secondly, a more flexible and accurate synchronization control technology is proposed so that the above vector-polynomial-based chaotic synchronization can be realized within a time that is predefined as a tunable control parameter. Subsequently, the theoretical derivation is carried out to prove the synchronization time in the above-mentioned synchronization control scheme can be set independently without being affected by the initial conditions or other control parameters. Finally, several simulation experiments on secure information transmission are presented to verify the efficiency and superiority of the designed chaotic synchronization scheme and synchronization control technology.



    加载中


    [1] X. Chai, J. Zhang, Z. Gan, Y. Zhang, Medical image encryption algorithm based on latin square and memristive chaotic system, Multimed Tools Appl., 78 (2019), 35419–35453. doi: 10.1007/s11042-019-08168-x
    [2] J. He, B. Lai, A novel 4d chaotic system with multistability: Dynamical analysis, circuit implementation, control design, Mod. Phys. Lett. B, 33 (2019), 1950240.
    [3] S. Zhang, Y. Zeng, Z. Li, M. Wang, L. Xiong, Generating one to four-wing hidden attractors in a novel 4d no-equilibrium chaotic system with extreme multistability, Chaos, 28 (2018), 013113. doi: 10.1063/1.5006214
    [4] Q. Li, S. Liu, Switching event-triggered network synchronization for chaotic systems with different dimensions, Neurocomputing, 311 (2018), 32–40. doi: 10.1016/j.neucom.2018.05.039
    [5] C. Wang, R. Chu, J. Ma, Controlling a chaotic resonator by means of dynamic track control, Complexity, 21 (2015), 370–378. doi: 10.1002/cplx.21572
    [6] A. Mansouri, X. Wang, A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme, Inf. Sci., 520 (2020), 46–62. doi: 10.1016/j.ins.2020.02.008
    [7] U. E. Kocamaz, S. Cicek, Y. Uyaroglu, Secure communication with chaos and electronic circuit design using passivity-based synchronization, J. Circuit. Syst. Comp., 27 (2018), 1850057. doi: 10.1142/S0218126618500573
    [8] Q. Li, S. Liu, Y. Chen, Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems, Appl. Math. Comput., 333 (2018), 521–535.
    [9] Y. Yang, L. Wang, S. Duan, L. Luo, Dynamical analysis and image encryption application of a novel memristive hyperchaotic system, Opt. Laser Technol., 133 (2021), 106553. doi: 10.1016/j.optlastec.2020.106553
    [10] Z. Yang, D. Liang, D. Ding, Y. Hu, Dynamic behavior of fractional-order memristive time-delay system and image encryption application, Mod. Phys. Lett. B, 35 (2021), 2150271. doi: 10.1142/S0217984921502717
    [11] X. Wang, Y. Su, Image encryption based on compressed sensing and dna encoding, Signal Process-Image, 95 (2021), 116246. doi: 10.1016/j.image.2021.116246
    [12] R. Luo, Y. Wang, Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication, Chaos, 22 (2012), 023109. doi: 10.1063/1.3702864
    [13] Q. Li, S. Liu, Y. Chen, Finite-time adaptive modified function projective multi-lag generalized compound synchronization for multiple uncertain chaotic systems, Int. J. Ap. Math. Com-pol, 28 (2018), 613–624.
    [14] A. J. Munoz-Vazquez, J. D. Sanchez-Torres, C. A. Anguiano-Gijon, Single-channel predefined-time synchronisation of chaotic systems, Asian J. Control, 23 (2021), 190–198. doi: 10.1002/asjc.2234
    [15] Y. Li, X. Yang, L. Shi, Finite-time synchronization for competitive neural networks with mixed delays and nonidentical perturbations, Neurocomputing, 185 (2016), 242–253. doi: 10.1016/j.neucom.2015.11.094
    [16] X. Liu, H. Su, M. Z. Q. Chen, A switching approach to designing finite-time synchronization controllers of coupled neural networks, IEEE T. Neur. Lear., 27 (2016), 471–482. doi: 10.1109/TNNLS.2015.2448549
    [17] S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. doi: 10.1137/S0363012997321358
    [18] L. Wang, T. Dong, M. Ge, Finite-time synchronization of memristor chaotic systems and its application in image encryption, Appl. Math. Comput., 347 (2019), 293–305.
    [19] X. Cai, J. Wang, S. Zhong, K. Shi, Y. Tang, Fuzzy quantized sampled-data control for extended dissipative analysis of t-s fuzzy system and its application to wpgss-sciencedirect, J. Franklin I., 358 (2021), 1350–1375. doi: 10.1016/j.jfranklin.2020.12.002
    [20] L. Hua, H. Zhu, K. Shi, S. Zhong, Y. Tang, Y. Liu, Novel finite-time reliable control design for memristor-based inertial neural networks with mixed time-varying delays, IEEE T. Circuits-I, 68 (2018), 1599–1609.
    [21] G. Ji, H. Cheng, J. Yu, H. Jiang, Finite-time and fixed-time synchronization of discontinuous complex networks: A unified control framework design, J. Franklin I., 355 (2018), 4665–4685. doi: 10.1016/j.jfranklin.2018.04.026
    [22] X. Yang, J. Lam, D. W. C. Ho, Z. Feng, Fixed-time synchronization of complex networks with impulsive effects via non-chattering control, IEEE T. Automat. Contr., 62 (2017), 5511–5521. doi: 10.1109/TAC.2017.2691303
    [23] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE T. Automat. Contr., 57 (2012), 2106–2110. doi: 10.1109/TAC.2011.2179869
    [24] X. Liu, D. W. C. Ho, Q. Song, J. Cao, Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dynam., 90 (2017), 2057–2068. doi: 10.1007/s11071-017-3782-9
    [25] E. Jimenez-Rodriguez, J. D. Sanchez-Torres, A. G. Loukianov, On optimal predefined-time stabilization, Int. J. Robust Nonlin., 27 (2017), 3620–3642.
    [26] J. D. Sanchez-Torres, D. Gomez-Gutierrez, E. Lopez, A. G. Loukianov, A class of predefined-time stable dynamical systems, Int. J. Robust Nonlin., 35 (2018), i1–i29.
    [27] C. A. Anguiano-Gijon, A. J. Munoz-Vazquez, J. D. Sanchez-Torres, G. Romero-Galvan, F. Martinez-Reyes, On predefined-time synchronisation of chaotic systems, Chaos Soliton. Fract., 122 (2019), 172–178. doi: 10.1016/j.chaos.2019.03.015
    [28] J. D. Sanchez-Torres, A. J. Munoz-Vazquez, M. Defoort, R. Aldana-Lopez, D. Gomez-Gutierrez, Predefined-time integral sliding mode control of second-order systems, Int. J. Syst. Sci., (2020), 1–11. doi: 10.1080/00207721.2020.1815893.
    [29] A. J. Munoz-Vazquez, J. D. Sanchez-Torres, D. Michael, predefined-time sliding-mode control of fractionalorder systems, Asian J. Control, (2020). 1–9. doi: 10.1002/asjc.2447.
    [30] A. J. Munoz-Vazquez, G. Fernandez-Anaya, J. D. Sanchez-Torres, F. Melendeza-Vazquez, Predefined-time control of distributed-order systems, Nonlinear Dynam., 103 (2021), 2689–2700. doi: 10.1007/s11071-021-06264-y
    [31] A. J. Munoz-Vazquez, J. D. Sanchez-Torres, M. Defoort, S. Boulaaras, Predefined-time convergence in fractional-order systems, Chaos Soliton. Fract., 143 (2021), 110571–110576. doi: 10.1016/j.chaos.2020.110571
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2294) PDF downloads(93) Cited by(5)

Article outline

Figures and Tables

Figures(16)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog