Research article

Variable step size predictor design for a class of linear discrete-time censored system

  • Received: 05 March 2021 Accepted: 15 July 2021 Published: 21 July 2021
  • MSC : 93E11, 93C55

  • We propose a novel variable step size predictor design method for a class of linear discrete-time censored system. We divide the censored system into two parts. The system measurement equation in one part doesn't contain the censored data, and the system measurement equation in the other part is the censored signal. For the normal one, we use the Kalman filtering technology to design one-step predictor. For the one that the measurement equation is censored, we determine the predictor step size according to the censored data length and give the gain compensation parameter matrix $β(\mathfrak{s})$ for the case predictor with obvious errors applying the minimum error variance trace, projection formula, and empirical analysis, respectively. Finally, a simulation example shows that the variable step size predictor based on empirical analysis has better estimation performance.

    Citation: Zhifang Li, Huihong Zhao, Hailong Meng, Yong Chen. Variable step size predictor design for a class of linear discrete-time censored system[J]. AIMS Mathematics, 2021, 6(10): 10581-10595. doi: 10.3934/math.2021614

    Related Papers:

  • We propose a novel variable step size predictor design method for a class of linear discrete-time censored system. We divide the censored system into two parts. The system measurement equation in one part doesn't contain the censored data, and the system measurement equation in the other part is the censored signal. For the normal one, we use the Kalman filtering technology to design one-step predictor. For the one that the measurement equation is censored, we determine the predictor step size according to the censored data length and give the gain compensation parameter matrix $β(\mathfrak{s})$ for the case predictor with obvious errors applying the minimum error variance trace, projection formula, and empirical analysis, respectively. Finally, a simulation example shows that the variable step size predictor based on empirical analysis has better estimation performance.



    加载中


    [1] J. Tobin, Estimation of relationships for limited dependent variables, Econometrica, 26 (1958), 24-36. doi: 10.2307/1907382
    [2] T. Amemiya, Tobit model: A survey, J. Econometrics, 24 (1984), 3-61.
    [3] R. T. Carson, Y. X. Sun, The Tobit model with a non-zero threshold, Econom. J., 10 (2007), 488-502. doi: 10.1111/j.1368-423X.2007.00218.x
    [4] C. Miller, B. Allik, M. Piovoso, R. Zurakowski, Estimation of Mobile Vehicle Range & Position Using The Tobit Kalman Filter, 53rd IEEE Conference on Decision and Control, 2014, 5001-5007.
    [5] J. Huang, X. He, Detection of Intermittent Fault for Discrete-Time Systems with Output Dead-Zone: A Variant Tobit Kalman Filtering Approach, J. Control Sci. Eng., (2017), 7849841.
    [6] H. Okasha, M. Nassar, S. A. Dobbah, E-Bayesian estimation of Burr Type XⅡ model based on adaptive Type-Ⅱ progressive hybrid censored data, AIMS Math., 6 (2021), 4173-4196. doi: 10.3934/math.2021247
    [7] B. Allik, C. Miller, M. Piovoso, R. Zurakowski, Estimation of Saturated Data Using the Tobit Kalman Filter, American Control Conference (ACC), 2014, 4151-4156.
    [8] B. Allik, C. Miller, M. Piovoso, R. Zurakowski, The Tobit Kalman Filter: An Estimator for Censored Measurements, IEEE T. Contr. Syst. T., 24 (2016), 365-371. doi: 10.1109/TCST.2015.2432155
    [9] H. Geng, Z. D. Wang, Y. Liang, Y. H. Cheng, F. E. Alsaadi, Tobit Kalman filter with fading measurements, Signal Process., 140 (2017), 60-68. doi: 10.1016/j.sigpro.2017.04.016
    [10] F. Han, H. L. Dong, Z. D. Wang, G. F. Li, F. E. Alsaadi, Improved Tobit Kalman Filtering for Systems with Random Parameters via Conditional Expectation, Signal Process., 147 (2018), 35-45. doi: 10.1016/j.sigpro.2018.01.015
    [11] W. L. Li, Y. M. Jia, J. P. Du, Tobit Kalman filter with time-correlated multiplicative measurement noise, IET Control Theory Appl., 11 (2017), 122-128. doi: 10.1049/iet-cta.2016.0624
    [12] H. Geng, Z. D. Wang, Y. Liang, Y. H. Cheng, F. E. Alsaadi, Tobit Kalman Filter With Time-Correlated Multiplicative Sensor Noises Under Redundant Channel Transmission, IEEE Sens. J., 17 (2017), 8367-8377. doi: 10.1109/JSEN.2017.2766077
    [13] H. H. Zhao, Z. F. Li, B. Li, T. X. Li, A study on input noise second-order filtering and smoothing of linear stochastic discrete systems with packet dropouts, Adv. Differ. Equ., (2020), 474.
    [14] J. Arthur, A. Attarian, F. Hamilton, H. Tran, Nonlinear Kalman filtering for censored observations, Appl. Math. Comput., 316 (2018), 155-166.
    [15] J. J. Li, G. L. Wei, D. R. Ding, Y. R. Li, Set-membership filtering for discrete time-varying nonlinear systems with censored measurements under Round-Robin protocol, Neurocomputing, 281 (2018), 20-26. doi: 10.1016/j.neucom.2017.11.033
    [16] J. Huang, X. He, Fault detection of nonlinear systems with missing measurements and censored data, IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, 5797-5802.
    [17] C. Huang, B. Shen, H. W. Chen, H. S. Shu, A Dynamically event-triggered approach to recursive filtering with censored measurements and parameter uncertainties, J. Franklin Inst., 356 (2019), 8870-8889. doi: 10.1016/j.jfranklin.2019.08.029
    [18] H. Geng, Z. D. Wang, Y. H. Cheng, F. E. Alsaadi, A. M. Dobaie, State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach, Signal Process., 154 (2019), 120-128. doi: 10.1016/j.sigpro.2018.08.005
    [19] Z. L. Du, X. M. Li, Strong Tracking Tobit Kalman Filter with Model Uncertainties, Int. J. Control. Autom., 17 (2019), 345-355. doi: 10.1007/s12555-017-0655-4
    [20] K. Loumponias, N. Vretos, G. Tsaklidis, P. Daras, An Improved Tobit Kalman Filter with Adaptive Censoring Limits, Circuits Syst. Signal Process., 39 (2020), 5588-5617. doi: 10.1007/s00034-020-01422-w
    [21] S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica, 43 (2007), 934-937.
    [22] B. Allik, M. Ilg, R. Zurakowski, Ballistic Roll Estimation using EKF Frequency Tracking and Adaptive Noise Cancellation, IEEE Trans. Aerosp. Electron. Syst., 49 (2013), 2546-2553. doi: 10.1109/TAES.2013.6621835
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2308) PDF downloads(81) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog