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Abstract: We propose a novel variable step size predictor design method for a class of linear 

discrete-time censored system. We divide the censored system into two parts. The system 

measurement equation in one part doesn’t contain the censored data, and the system measurement 

equation in the other part is the censored signal. For the normal one, we use the Kalman filtering 

technology to design one-step predictor. For the one that the measurement equation is censored, we 

determine the predictor step size according to the censored data length and give the gain 

compensation parameter matrix      for the case predictor with obvious errors applying the 

minimum error variance trace, projection formula, and empirical analysis, respectively. Finally, a 

simulation example shows that the variable step size predictor based on empirical analysis has better 

estimation performance. 
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1. Introduction 

The censored system is also known as Tobit model, survival model or truncated model, which 

was first proposed as a regression model of expenditure by the Nobel Prize winner James Tobin [1]. 

The censored system is different from the discrete selection model and the general continuous 

variable selection model, which consists of two parts: one is the ideal measurement model which 

represents the constraint condition; the other is the actual measurement model which satisfies the 
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constraint condition [2]. The estimation problem for censored system has been a very active area of 

research and has widely applications. For example, in the aspect of economics, a new estimator was 

proposed to estimate non-zero and unknown censoring threshold, and was applied to charitable 

donations [3]. In the aspect of traffic, based on the censored system, the signal strength received from 

the censored data in the system was used as a distance to estimate and control the vehicle position, 

and the estimation observer was designed [4]. In the aspect of fault detection, the discrete system 

with output dead-zone was studied as a special kind of censoring system, and the intermittent fault 

detector was designed [5]. The censored systems were divided into five categories according to 

different likelihood functions of models [2], the first system was the standard Tobit model, and the 

other four systems were also called generalized Tobit model. We focus on the state estimation 

problem of the first type of model, and its output equation is described as follows: 

                           
  , 

    
               
               

                   . 

The previous research mainly focused on parameter estimation of the censored system, such as 

Bayesian estimation method [6]. In recent years, in order to solve the state estimation problem in the 

first type of model, numerous methods have been proposed [7–20]. In [7], Allik et al. first proposed a 

new Tobit Kalman filter theory, and the saturated data converged to the standard Kalman filter when 

there wasn’t censored. In [8], Allik et al. designed an estimation method of the censored system by 

using Bayesian theory, projection formula, and probability distribution. Using state augmentation 

technique and the orthogonality projection principle, Geng et al. designed an estimator for a class of 

discrete-time system with both censored and fading measurements [9]. In [10], by establishing a new 

weighted variance formula and introducing Bernoulli random variables, Han et al. dealt with the 

random matrices and the censoring phenomenon, respectively. In [11,12], the Tobit Kalman filter was 

extended to a linear discrete time-varying system with time-correlated multiplicative measurement 

noises. Based on polynomial filtering technique, Zhao proposed a novel non-Gaussian noise 

estimation method for a class of special censored system [13]. Based on linear Tobit Kalman filter 

theory, Arthur et al. designed an improved extended Tobit Kalman filter for nonlinear censored 

system [14]. Li et al. described the censored measurements under the Round-Robin protocol by a 

new periodical model, and introduced threshold-dependent linear matrix inequalities with dimension 

periodic variation to obtain the gain matrix of the filter and ensure the filtering performance [15]. 

Huang and He designed a fault detector by the extended Tobit Kalman filter theory for nonlinear 

system with censored data [16]. In [17], Huang et al. designed a robust recursive filter and obtained 

the recursive value of the upper bound of the filtering error variance for censored system, and 

analyzed the bounded condition of the filtering error variance. Geng et al. designed an improved 

recursive Tobit Kalman filter and solved the filtering problem under the effect of non-Gaussian and 

time-correlated additive measurement noise by using the measurement difference method and 

Lévy-Ito theorem [18]. In [19], Du and Li proposed a strong tracking Tobit Kalman filter which had 

both censored measurements and model uncertainties. Taking the orthogonal principle as the 

criterion of the model mismatch, the gain matrix was adjusted adaptively by introducing fading 

factor into the prior error variance. Loumponias considered the case of interval censoring and 

improved the standard Tobit Kalman filter [20]. From the present point of view, the traditional 

Kalman filter, extended Kalman filter, and other methods are not accurate. Although Tobit Kalman 
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filter has been proposed in [8], it is still not ideal from the perspective of simulation effect. Therefore, 

we seek for a new estimation method to make the estimation accuracy better in this paper. 

In this paper, first of all, we summarize the traditional estimation methods of the censored 

system, one of which is that we use Tobit Kalman filter to estimate the state of censored system. In 

addition, the unbiased minimum variance estimation method [21] proposed by Gillijns and De Moor 

is also used to solve the estimation problem for linear censored system. By observing the simulation 

verification of these two methods, it is found that the simulation effects of these two methods aren’t 

the best. Therefore, we propose a new estimation method--variable step size prediction method. On 

the one hand, we use Kalman filtering technology to solve the case system without censored data. On 

the other hand, we propose the variable step size prediction method by introducing compensation 

term to solve the case system with censored data. 

The structure of the paper is arranged as follows. In Section 2, we formulate the estimation 

problem for linear censored system. In Section 3, we introduce two classical estimation methods. In 

Section 4, we consider a new estimator, variable step size predictor. Finally, in Section 5, a 

simulation example is carried out for these methods. 

2. Problem formulation 

Consider a class of linear censored system, having dynamics: 

                     , (2.1) 

                   , (2.2) 

with actual measurement 

       
                        

                          
  (2.3) 

where (2.1) represents the process model, (2.2) and (2.3) represent the measurement model,     

is the discrete-time index,         is the state vector,         is the hidden measurement 

vector,         is the measurement vector of actual measurement, and              
 
 is the 

threshold vector.           and           are known matrix parameters. 

 

Assumption 1. The initial state      is unknown and uncorrelated to      and      that satisfies 

          , 

                        
 
      . 

Assumption 2. The         and          are uncorrelated white noise with zero mean that 

satisfy  

       , 

                 , 

       , 
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                 , 

where      ,           . 

In this paper, the problem is to find the linear minimum variance estimation of state process 

      of a class of discrete-time censored system. Throughout this paper, we denote           as a 

linear function based on measurement sequence                     that minimizes the error 

variance                                             . 

3. Classical estimation methods for censored system 

In this section, we first introduce the classical Tobit Kalman filter method [8]. Then, we extend 

the unbiased minimum variance estimation method to solve the estimation problem for linear 

censored system [21]. 

3.1. Tobit Kalman filter 

Tobit Kalman filter is a new recursive estimation method for linear censored system. The 

Bayesian theory and projection formula are used to obtain the state estimation and error variance. In 

the update stage, a Bernoulli random variable is introduced to describe the censored measurement, 

and the probability distribution of censored variables is used to evaluate the measurement. 

Based on system (2.1)–(2.3) and Tobit Kalman filter theory, the state recursive equation is given 

by 

                      , (3.1) 

                                
                   , (3.2) 

where 

                              , (3.3) 

                                                               , (3.4) 

           
          

 
              

          

 
     

          

 
  , (3.5) 

                               , (3.6) 

                        
                         , (3.7) 
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, (3.8) 

                           

 

 
 

                              

                              

 
                               

 
 

, (3.9) 

                        
               

 
    

               

 
   

               

 
   , (3.10) 

   
                  

 
   

 

    
 
 
                    

 

   
    

  
     , (3.11) 

   
               

 
  

  
               

 
 

    
               

 
 
, (3.12) 

   
                  

 
  

 

   
 
 
                    

 

   . (3.13) 

The Tobit Kalman filter estimation can be computed by the following steps: 

Step 1: Set    ,              , and             . Compute   
               

 
  by 

(3.12). 

Step 2: Compute        ,                      , and                  by (3.8), (3.9), and 

(3.10), respectively. 

Step 3: Compute         ,         , and         by (3.3), (3.4), and (3.5). 

Step 4: Compute          ,        ,          and       , by (3.1), (3.2), (3.6), and (3.7), 

respectively. 

Step 5: Let      . Repeat Step 1 to Step 4 till    . 

3.2. Unbiased minimum variance estimation 

In this section, a recursive filter for linear discrete-time censored system is obtained by using 

unbiased minimum variance estimation method [21]. In [21], an unbiased minimum variance 

estimation of the unknown disturbance is obtained by using weighted least squares method. Under 

the unbiased condition, the Lagrange multiplication is used to calculate the minimum trace of the 

error variance and obtain the gain matrix. By employing unbiased minimum variance estimation 

method, the one-step predictor for linear censored system is given in Theorem 1. 
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Theorem 1. For system (2.1)–(2.3) with Assumption 1 and 2, the one-step predictor in the case of 

       is as follows: 

                      , (3.14) 

                            , (3.15) 

where 

                      
     , (3.16) 

                                       , (3.17) 

                           , (3.18) 

                             , (3.19) 

                                              . (3.20) 

The one-step predictor in the case of        is computed by the following equation:  

                      , (3.21) 

                                                     , (3.22) 

where 

                               , (3.23) 

                         , (3.24) 

                                    , (3.25) 

                                      , (3.26) 

                               , (3.27) 

                           , (3.28) 

                                               , (3.29) 

                          , (3.30) 

and            is a sufficient and necessary condition for unknown input estimation unbiased. 

 

Proof: According to 

      

   
 
 
   

 ,               

  
 
 
  

 , 

we define 

                                           . 
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Then, the system (2.1)–(2.3) is re-expressed as 

                     , (3.31) 

                              , (3.32) 

         
                        

                     
  (3.33) 

where         is an unknown input vector,     ,      and      are observable. 

When        and         , it is a conventional linear discrete system, and we can obtain 

(3.14)–(3.20) by Kalman filtering technology. When        and            , it is a linear 

discrete system with unknown disturbance. And, we can get (3.21)–(3.30) by using the same methods 

in [21]. 

The proof is now completed. 

 

Then according to Theorem 1, the unbiased minimum variance estimation based one-step 

predictor can be computed by: 

Step 1: Set    ,              , and             , if       ,      ,      , and 

     are computed by (3.16), (3.17), and (3.20), respectively. 

Step 2: Compute          ,        ,         , and        by (3.14), (3.15), (3.18), and (3.19), 

respectively. 

Step 3: If       , compute     ,     , and      by (3.24), (3.26), and (3.27).  

Step 4: Compute       and      by (3.23) and (3.25), respectively. 

Step 5: Compute          ,        ,       ,      , and           by (3.21), (3.22), (3.28), 

(3.29), and (3.30), respectively. 

Step 6: Let      . Repeat Step 1 to Step 5 till    . 

4. Variable step size predictor 

It is found that the estimation error will increase when measurement is censored. Note that, the 

multi-step prediction can skip the censored measurement and use the effective measurement. 

Therefore, in this section, based on classical Kalman prediction method, we design variable step size 

predictor.  

According to the measurement model (2.3), we estimate the state of the censored system in the 

following two cases.  

4.1. Predictor in case of         

When       , the system (2.1)–(2.3) equation is as follows: 

                     , (4.1) 

                   . (4.2) 

By using Kalman filtering technology, we have 

                      , (4.3) 
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                           , (4.4) 

where  

                                          , (4.5) 

                                              , (4.6) 

                           , (4.7) 

                            . (4.8) 

4.2. Predictor in case of         

When       , the system (2.1)–(2.3) has the following equation: 

                     , (4.9) 

       . (4.10) 

Remark 1. In this section, it can be obtained from system (2.1)–(2.3) that the system is in the 

censored case when       , i.e.       . In this case, if                , we can use 

multi-step predictor to estimate the state of the system. If                , the predictor needs 

to be revised. 

 

The estimation formula of the censored system can be described as: 

If                , we use multi-step predictor to estimate the state of the system. 

The recursive predictor is 

                          ,           (4.11) 

And the error variance of the predictor can be given by 

                               ,           (4.12) 

If                , the predictor (4.11) needs to be revised as 

                                                ,           (4.13) 

The      is a gain compensation parameter matrix. We will use three methods to calculate it. 

In case of        , and                , we give two methods to calculate the gain 

compensation parameter matrix      by using the minimum error variance trace and projection 

formula in Theorem 2 and 3. In Remark 2, we also summarize the third method based on empirical 

analysis. 

 

The first method is based on the minimum error variance trace, and      can be given by 

Theorem 2. 

Theorem 2. Consider system (4.9)–(4.10) with Assumption 1 and 2, based on minimum trace of 

error variance, we have the gain compensation parameter matrix       . 
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Proof: According to (4.9)–(4.10), and (4.13), the state estimation error is computed as follows: 

                                

                                               

Moreover, the error variance can be obtained by 

                                     

                                                                   

                                                                

                                              

                                                        

                                                                 

                                                        

                                         

                                                           

                                                                  

                                                           

                         

                                                

  (4.14) 

where  

                                           , 

         . 

The goal of this theorem is to minimize trace of the error variance as follows: 

                                                                 

                                                             . 

  (4.15)  

Take the derivative of (4.15) with respect to      and make it equal to zero, we have 

                                                                      

                                               , 

and obviously,       . Now, the error variance is minimal. 

The proof is now completed. 

 

The second method is based on projection formula, and      can be given by Theorem 3. 

Theorem 3. Consider system (4.9)–(4.10) with Assumption 1 and 2, based on projection formula, we 

have 
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Proof: By applying projection formula to (4.3), we can obtain that 

                                                 
 
                       

              
 
 
  

                 . 

Compared with (4.13), we have 

                                                
 
  

                                     
 
 
  

 

                                   
 
  

                                     
 
 
  

 

                                                    

                                                             

                                  

Notice that 

                  , 

                  , 

  

  

                      , 

then 

                                  
   . 

According to             , 

                   . 

Therefore 
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The proof is now completed. 

The third method is based on empirical analysis, and      can be given by Remark 2. 

Remark 2. It can be seen from Figures 2 and 3 in Section 5 that although we can get the theoretical 

result of      according to Theorem 2 and 3 and have certain advantages compared with Tobit 

Kalman filter, there is still a certain gap compared with the real measurement. Note that when 

      , it is not the true measurement value, and the true measurement value should be less than 

or equal to τ. Therefore, we design (4.13) as the estimator and use the second term on the right of the 

equal-sign (4.13) as the compensation for the censored measurements. In fact, when 

               , the estimator has obvious deviation. We need to adjust the parameter      in 

time to make the next step estimation accurate enough. In this case,      must be a positive definite 

matrix. At the same time, because the condition of        is       , that is, when        

appears, it is equivalent to that the true measurement value increases the dimension of       . 

Obviously, in this case, the value of      should be kept around the size of the unit matrix, so that 

the state estimate of the censored system will be close to the real value. 

In this paper, we take to      be equal to the identity matrix. 

Then, the variable step size predictor can be computed by: 

Step 1: Set    ,              , and             , if       , compute      and 

     by (4.5) and (4.6), respectively. Then compute          ,        ,         , and        by 

(4.3), (4.4), (4.7), and (4.8). 

Step 2: If       , compare the size of   and              .  

Step 3: If                , compute           and          by (4.11) and (4.12), 

respectively. 

Step 4: If                , compute           and          by (4.13) and (4.14), 

respectively. 

Step 5: Let      . Repeat Step 1 to Step 4 till    . 

5. Simulation 

In this section, the Tobit Kalman filtering, unbiased minimum variance estimation, and variable 

step size predictor for censored system are compared by a numerical simulation. The following 

example is motivated by the problem of estimating ballistic roll rates from censored magnetometer 

data [22], and has dynamics of the form of (2.1)–(2.3) with the parameters 

      
         

            
 ,           ,  

            ,          , 

the system noise      and the measurement noise      are both uncorrelated white noises, 

satisfying     and            . Set              ,       ,       . 

The Tobit Kalman filter based predictor and unbiased minimum variance based predictor are 

compared with the three estimation methods for solving the gain compensation parameter matrix 

     of the variable step size predictor in Figures 1, 2, and 3, respectively. It is shown that the 

variable step size predictor based on projection formula fluctuates greatly, while the predictor based 

on Tobit Kalman filter and the predictor based on empirical analysis have higher estimation accuracy. 

In Figure 4, minimum trace of error variance based variable step size predictor, projection formula 
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based variable step size predictor, and empirical analysis based variable step size predictor are 

compared. It is seen that empirical analysis based predictor has better estimation performance. 

In Table 1, we take 100 sampling periods to calculate the average prediction estimation error of 

different methods. The second column of the table is the mean prediction error of the state 

element              , and the third column is the mean prediction error of the state element 

              . The fourth column is the mean prediction error of the state elements sum 

               and               . It can be seen from the fourth column of the table, the 

empirical analysis based variable step size predictor has smaller estimation error and better 

estimation accuracy. 

 

Figure 1. True value of signal       and       (blue solid line), Tobit Kalman filter 

based predictor (red dashed line), unbiased minimum variance estimation based predictor 

(black solid line), and minimum trace of error variance based variable step size predictor 

(green dash-dot line). 

 

Figure 2. True value of signal       and       (blue solid line), Tobit Kalman filter based 

predictor (red dashed line), unbiased minimum variance estimation based predictor (black 

solid line), and projection formula based variable step size predictor (orange dotted line). 
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Figure 3. True value of signal       and       (blue solid line), Tobit Kalman filter based 

predictor (red dashed line), unbiased minimum variance estimation based predictor (black 

solid line), and empirical analysis based variable step size predictor (orange dashed line). 

 

Figure 4. True value of signal       and       (blue solid line), minimum trace of 

error variance based variable step size predictor (orange dash-dot line), projection 

formula based variable step size predictor (yellow dotted line), and empirical analysis 

based variable step size predictor (purple dashed line). 

Table 1. Prediction error under different estimation methods. 

Estimation methods State Mean Prediction 

Error (            ) 

State Mean Prediction 

Error (            ) 

State Mean Prediction 

Error (          ) 

Tobit Kalman filter 0.378532026 0.262740827 0.320636427 

Unbiased minimum 

variance 

0.662930028 0.399790754 0.531360391 

Variable step size 

predictor (empirical 

analysis) 

0.162237848 0.039515826 0.100876837 
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6. Conclusions 

A novel estimation method of variable step size predictor is proposed for censored system. 

Through the recursive method and projection formula, the variable step size prediction estimation 

formula is obtained. When       , we use Kalman filter one-step prediction method to design the 

estimator. When        and                , we design the estimator based on Kalman 

filter multi-step prediction method. When        and                , we design the 

estimator by using the minimum trace of error variance, projection formula, and empirical analysis, 

respectively. Finally, the Tobit Kalman filter based predictor, unbiased minimum variance estimation 

based predictor, minimum trace of error variance based method, projection formula based method, 

and empirical analysis based method are compared by numerical simulation. The results show that 

the variable step size predictor based on empirical analysis has the optimal estimation performance. 
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